一.选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中.只有一项是符合题目要求的.
(1)若A= ,B= ,则 =
(A)(-1, ∞) (B)(-∞,3) (C)(-1,3) (D)(1,3)
答案:C 解析:画数轴易知.
(2)已知 ,则i( )=
(A) (B) (C) (D)
答案:B 解析:直接计算.
(3)设向量 , ,则下列结论中正确的是
(A) (B)
(C) (D) 与 垂直
答案:D 解析:利用公式计算,采用排除法.
(4)过 点(1,0)且与直线x-2y-2=0平行的直线方程是
(A)x-2y-1=0 (B)x-2y 1=0 (C)2x y-2=0 (D)x 2y-1=0
答案:A 解析:利用点斜式方程.
(5)设数列{ }的前n项和 = ,则 的值为
(A) 15 (B) 16 (C) 49 (D)64
答案:A 解析:利用 =S8-S7,即前8项和减去前7项和.
(6)设abc>0,二次函数f(x)=ax2 bx c的图像可能是答案:D 解析:利用开口方向a、对称轴的位置、y轴上的截距点c之间关系,结合abc>0产生矛盾,采用排除法易知.
(7)设a= ,b= ,c= ,则a,b,c的大小关系是
(A)a>c>b (B)a>b>c (C)c>a>b (D)b>c>a
答案:A 解析:利用构造幂函数比较a、c再利用构造指数函数比较b、c.
(8)设x,y满足约束条件 则目标 函数z=x y的最大值是
(A)3 (B) 4 (C) 6 (D)8
答案:C 解析:画出可行域易求.
(9)一个几何体的三视图如图,该几何体的表面积是
(A)372 (C)292
(B)360 (D)280
答案:B 解析:可理解为长8、宽10、高2的长方体和长6、宽2、高8的长方体组合而成,注意2×6重合两次,应减去.(10)甲从正方形四个顶点中任意选择两个顶点连成直线,乙也从该正方形四个顶点中任意选择两个顶点连成直线,则所得的两条直线相互垂直的概率是
(A) (B) (C) (D)
答案:C 解析:所有可能有6×6,所得的两条直线相互垂直有5×2.数 学(文科)(安徽卷)
第Ⅱ卷(非选择题共100分)
二.填空题:本大题共5小题,每小题5分,共25分.把答案填在答题卡的相应位置
(11)命题“存在x∈R,使得x2 2x 5=0”的否定是
答案:对任何X∈R,都有X2 2X 5≠0
解析:依据“存在”的否定为“任何、任意”,易知.
(12)抛物线y2=8x的焦点坐标是
答案:(2,0) 解析:利用定义易知.
(13)如图所示,程序框图(算法流程图)的输出值x= 答案:12 解析:运算时X顺序取值为: 1,2,4,5,6,8,9,10,12.
(14)某地有居民100000户,其中普通家庭99 000户,高收入家庭1 000户.从普通家庭中以简单随机抽样方式抽取990户,从高收入家庭中以简单随机抽样方式抽取l00户进行调查,发现共有120户家庭拥有3套或3套以上住房,其中普通家庭50户,高收人家庭70户.依据这些数据并结合所掌握的统计知识,你认为该地拥有3套或3套以上住房的家庭所占比例的合理估计是 .
答案:5.7% 解析: , ,易知 .
(15)若a>0 ,b>0,a b=2,则下列不等式对一切满足条件的a,b恒成立的是 . (写出所有正确命题的编号).
①ab≤1; ② ≤ ; ③a2 b2≥2; ④a3 b3≥3;
答案:①,③,⑤ 解析:①,⑤化简后相同,令a=b=1排除②、易知④ ,再利用 易知③正确三、解答题:本大题共6小题.共75分.解答应写出文字说明、证明过程或演算步骤.解答写在答题卡上的指定区域内.
(16)△ABC的面积是30,内角A,B,C,所对边长分别为a,b,c,cosA= .
(1)求
(2)若c-b= 1,求a的值.
(本小题满分12分)本题考查同角三角形函数基本关系,三角形面积公式,向量的数量积,利用余弦定理解三角形以及运算求解能力.
解:由cosA=1213 ,得sinA= =513 .
又12 bc sinA=30,∴bc=156.
(1) =bc cosA=1561213 =144.
(2)a2=b2 c2-2bc cosA=(c-b)2 2bc(1-cosA)=1 2156(1-1213 )=25,
∴a=5
(17)椭圆E经过点A(2,3),对称轴为坐标轴,焦点F1,F2在x轴上,离心率 .
(1)求椭圆E的方程;
(2)求∠F1AF2的角平分线所在直线的方程.(本小题满分12分)本题考查椭圆的定义,椭圆的标准方程及简单几何性质,直线的点斜式方程与一般方程,点到直线的距离公式等基础知识,考查解析几何的基本思想和综合运算能力.
解:(1)设椭圆E的方程为 由e=12 ,得ca =12 ,b2=a2-c2 =3c2. ∴ 将A(2,3)代入,有 ,解得:c=2, 椭圆E的方程为
(Ⅱ)由(Ⅰ)知F1(-2,0),F2(2,0),所以直线AF1的方程为 y=34 (X 2),
即3x-4y 6=0. 直线AF2的方程为x=2. 由椭圆E的图形知,
∠F1AF2的角平分线所在直线的斜率为正数.
设P(x,y)为∠F1AF2的角平分线所在直线上任一点,
则有
若3x-4y 6=5x-10,得x 2y-8=0,其斜率为负,不合题意,舍去.
于是3x-4y 6=-5x 10,即2x-y-1=0.
所以∠F1AF2的角平分线所在直线的方程为2x-y-1=0.18、(本小题满分13分)
某市2010年4月1日—4月30日对空气 污染指数的检测数据如下(主要污染物为可吸入颗粒物):
61,76,70,56,81,91,92,91,75 ,81,88,67,101,103,95,91,
77,86,81,83,82,82,64,79,86,85,75,71,49,45,
(Ⅰ) 完成频率分布表;
(Ⅱ)作出频率分布直方图;
(Ⅲ)根据国家标准,污 染指数在0~50之间时 ,空气质量为优:在51~100之间时,为良;在101~150之间时,为轻微污染;在151~200之间时,为轻度污染。
请你依据所给数据和上述标准,对 该市的空气质量给出一个简短评价.
(本小题满分13分)本题考查频数,频数及频率分布直方图,考查运用统计知识解决简单实际问题的能力,数据处理能力和应用意识.
解:(Ⅰ) 频率分布表:
分 组 频 数 频 率
[41,51) 2 230
[51,61) 1 130
[61,71) 4 430
[71,81) 6 630
[81,91) 10 1030
[91,101) 5 530
[101,111) 2 230 (Ⅱ)频率分布直方图:
(Ⅲ)答对下述两条中的一条即可:
(i)该市一个月中空气污染指数有2天处于优的水平,占当月天数的115 . 有26天处于良好的水平,占当月天数的1315 . 处于优或良的天数共有28天,占当月天数的1415 . 说明该市空气质量基本良好.
(ii)轻微污染有2天,占当月天数的115 . 污染指数在80以上的接近轻微污染的天数有15天,加上处于轻微污染的天数,共有17天,占当月天数的1730 ,超过50%. 说明该市空气质量有待进一步改善.(19) (本小题满分13分)
如图,在多面体ABCDEF中,四边形ABCD是正方形,AB=2EF=2,E F∥AB,EF⊥FB,∠BFC=90°,BF=FC,H为BC的中点,
(Ⅰ)求证:FH∥平面EDB;
(Ⅱ)求证:AC⊥平面EDB;
(Ⅲ)求四面体B—DEF的体积;
(本小题满分13分)本题考查空间线面平行,线面垂直,面面垂直,体积的计算等基础知识,同时考查空间想象能力与推理论证能力.
(Ⅰ) 证:设AC与BD交于点G,则G为AC的中点. 连EG,GH,由于H为BC的中点,故GH∥AB且 GH= AB 又EF∥AB且 EF= AB
∴EF∥GH. 且 EF=GH ∴四边形EFHG为平行四边形.
∴EG∥FH,而EG 平面EDB,∴FH∥平面EDB.
(Ⅱ)证:由四边形ABCD为正方形,有AB⊥BC.
又EF∥AB,∴ EF⊥BC. 而EF⊥FB,∴ EF⊥平面BFC,∴ EF⊥FH.
∴ AB⊥FH.又BF=FC H为BC的中点,FH⊥BC.∴ FH⊥平面ABCD.
∴ FH⊥AC. 又FH∥EG,∴ AC⊥EG. 又AC⊥BD,EG∩BD=G,
∴ AC⊥平面EDB.
(Ⅲ)解:∵ EF⊥FB,∠BFC=90°,∴ BF⊥平面CDEF.
∴ BF为四面体B-DEF的高. 又BC=AB=2, ∴ BF=FC= (20)(本小题满分12分)
设函数f(x)= sinx-cosx x 1, 0﹤x﹤2 ,求函数f(x)的单调区间与极值.
(本小题满分12分)本题考查导数的运算,利用导数研究函数的单调性与极值的方法,考查综合运用数学知识解决问题的能力.
解:由f(x)=sinx-cosx x 1,0﹤x﹤2 ,
知 =cosx sinx 1,
于是 =1 sin(x ).
令 =0,从而sin(x )=- ,得x= ,或x=32 .
当x变化时, ,f(x)变化情况如下表:
X (0, )( ,32 )
32
(32 ,2 ) 0 - 0
f(x) 单调递增↗ 2
单调递减↘ 32
单调递增↗
由上表知f(x)的单调递增区间是(0, )与(32 ,2 ),单调递减区间是( ,32 ),极小值为f(32 )=32 ,极大值为f( )= 2.
(21)(本小题满分13分)
设 , ..., ,…是坐标平面上的一列圆,它们的圆心都在x轴的正半轴上,且都与直线y= x相切,对每一个正整数n,圆 都与圆 相互外切,以 表示 的半径,已知 为递增数列.
(Ⅰ)证明: 为等比数列;
(Ⅱ)设 =1,求数列 的前n项和.
(本小题满分13分)本题考查等比数列的基本知识,利用错位相减法求和等基本方法,考查抽象能力以及推理论证能力.
解:(Ⅰ)将直线y= x的倾斜角记为 , 则有tan = ,sin = 12 .
设Cn的圆心为( ,0),则由题意知 = sin = 12 ,得 = 2 ;同理 ,题意知 将 = 2 代入,解得 rn 1=3rn.
故{ rn }为公比q=3的等比数列.
(Ⅱ)由于r1=1,q=3,故rn=3n-1,从而 =n ,
记Sn= , 则有 Sn=1 23-1 33-2 ……… n . ①
=13-1 23-2 ……… (n-1) n . ② ①-②,得
=1 3-1 3-2 ……… -n = - n = –(n )
Sn= – (n ) .
2010安徽高考数学卷
葛军不会出2023年高考乙卷。葛军分别在2004年、2007、2008年、2010年、2013年五个年度,参与了多地的高考数学学科的命题,而在所有有葛军参与的命题,全部都让学生叫苦不已,葛军之名,也成为了很多学生所不想听到的。
在2004年的时候,葛军参加的江苏省高考数学命题工作,江苏省满分150分的情况下,全省平均分68分,而2007年,葛军再次参加江苏省高考命题工作,这一次均分仅仅50分,很多考生都是泪洒考场。2010年,同样是江苏省,这次要比前两次稍微的好一些,平均分达到了83.5分,不过此次的满分是160分,而2013年的安徽考试,全省平均分只有55分左右,导致2013年安徽省一本的分数线大幅度的下降。高考数学:数学科命题科学调控试卷难度,坚持数学科高考的基础性、综合性、应用性和创新性的考查要求,贯彻了“低起点,多层次,高落差”的调控策略,发挥了高考数学的选拔功能和良好的导向作用。理性思维在数学素养中起着最本质、最核心的作用。数学科高考突出理性思维,将数学关键能力与“理性思维、数学应用、数学探究、数学文化”的学科素养统一在理性思维的主线上,在数学应用、数学探究等方面突出体现了理性思维和关键能力的考查。对批判性思维能力的考查。如全国Ⅰ卷理科第12题不仅考查考生运用所学知识分析、解决问题的能力,同时也考查学生的观察能力、运算能力、推理判断能力与灵活运用知识的综合能力。科学调控难度。数学科命题科学调控试卷难度,坚持数学科高考的基础性、综合性、应用性和创新性的考查要求,贯彻了“低起点,多层次,高落差”的调控策略,发挥了高考数学的选拔功能和良好的导向作用。
2010安徽高考数学试题
2010年全国高考一卷理科数学的最后一题的第二问。求详细解答 方法一:由题意可知:数列an单调递增而且有界,根据极限存在定理,可知道,必然会有一个极限h使得lim(n→∞)an=h,対原式两边取极限,有lim(n→∞)a(n 1)=lim(n→∞) (c-1/an ),可得c=h 1/h,显然h>a1,即h>1,又由题意有a(n 1)a1,代入递推式可知:c>2,然后设c=k 1/k,bn=1/(an-k),由于c>2,显然对于任意k>0且k≠1均满足,对递推式两边同时减去k,然后整理有:1/(a(n 1)-k)=(kan-k^2 k^2)/(an-k),继续化简有:b(n 1)=k k^2bn看,又b1=1/1-k,根据不动点或者构造等比数列,可知:bn=k^2(n-1)(1/1-k^2) k/1-k^2,从而an=[1-k^2/k^2(n-1) k] k,显然对于任意k>0且k≠1,1-k^2/k^2(n-1) k均递减且趋向于0,因此an也趋向于k,若klog2,e>1,所以a2=log2,4所以c3} (D){x|x -1或x 3}【答案】C【解析】因为集合 ,全集 ,所以【命题意图】本题考查集合的补集运算,属容易题.(2) 已知 (a,b∈R),其中i为虚数单位,则a b=(A)-1 (B)1 (C)2 (D)3【答案】B【解析】由 得 ,所以由复数相等的意义知 ,所以 1,故选B.【命题意图】本题考查复数相等的意义、复数的基本运算,属保分题。(3)在空间,下列命题正确的是(A)平行直线的平行投影重合(B)平行于同一直线的两个平面平行(C)垂直于同一平面的两个平面平行(D)垂直于同一平面的两条直线平行【答案】D【解析】由空间直线与平面的位置关系及线面垂直与平行的判定与性质定理可以得出答案。【命题意图】考查空间直线与平面的位置关系及线面垂直与平行的判定与性质,属基础题。(4)设f(x)为定义在R上的奇函式,当x≥0时,f(x)= 2x b(b为常数),则f(-1)=(A) 3 (B) 1 (C)-1 (D)-3【答案】D(7)由曲线y= ,y= 围成的封闭图形面积为[来源:ks5u.](A) (B) (C) (D)【答案】A【解析】由题意得:所求封闭图形的面积为 ,故选A。【命题意图】本题考查定积分的基础知识,由定积分求曲线围成封闭图形的面积。(8)某台小型晚会由6个节目组成,演出顺序有如下要求:节目甲必须排在第四位、节目乙不能排在第一位,节目丙必须排在最后一位,该台晚会节目演出顺序的编排方案共有(A)36种 (B)42种 (C)48种 (D)54种【答案】B可知当直线 平移到点(5,3)时,目标函式 取得最大值3;当直线 平移到点(3,5)时,目标函式 取得最小值-11,故选A。【命题意图】本题考查不等式中的线性规划知识,画出平面区域与正确理解目标函式 的几何意义是解答好本题的关键。(11)函式y=2x - 的影象大致是【答案】A【解析】因为当x=2或4时,2x - =0,所以排除B、C;当x=-2时,2x - = ,故排除D,所以选A。【命题意图】本题考查函式的图象,考查同学们对函式基础知识的把握程度以及数形结合的思维能力。(12)定义平面向量之间的一种运算“ ”如下,对任意的 , ,令,下面说法错误的是( )A.若 与 共线,则 B.C.对任意的 ,有 D.【答案】B【解析】若 与 共线,则有 ,故A正确;因为 ,而,所以有 ,故选项B错误,故选B。【命题意图】本题在平面向量的基础上,加以创新,属创新题型,考查平面向量的基础知识以及分析问题、解决问题的能力。二、填空题:本大题共4小题,每小题4分,共16分.(13)执行右图所示的程式框图,若输入 ,则输出 的值为 .【答案】【解析】当x=10时,y= ,此时|y-x|=6;当x=4时,y= ,此时|y-x|=3;当x=1时,y= ,此时|y-x|= ;当x= 时,y= ,此时|y-x|= ,故输出y的值为 。【命题意图】本题考查程式框图的基础知识,考查了同学们的试图能力。【答案】【解析】由题意,设所求的直线方程为 ,设圆心座标为 ,则由题意知:,解得 或-1,又因为圆心在x轴的正半轴上,所以 ,故圆心座标为(3,0),因为圆心(3,0)在所求的直线上,所以有 ,即 ,故所求的直线方程为 。【命题意图】本题考查了直线的方程、点到直线的距离、直线与圆的关系,考查了同学们解决直线与圆问题的能力。(18)(本小题满分12分)已知等差数列 满足: , , 的前n项和为 .(Ⅰ)求 及 ;(Ⅱ)令bn= (n N*),求数列 的前n项和 .【解析】(Ⅰ)设等差数列 的公差为d,因为 , ,所以有,解得 ,所以 ; = = 。(Ⅱ)由(Ⅰ)知 ,所以bn= = = ,所以 = = ,即数列 的前n项和 = 。【命题意图】本题考查等差数列的通项公式与前n项和公式的应用、裂项法求数列的和,熟练数列的基础知识是解答好本类题目的关键。(19)(本小题满分12分)如图,在五棱锥P—ABCDE中,PA⊥平面ABCDE,AB‖CD,AC‖ED,AE‖BC, ABC=45°,AB=2 ,BC=2AE=4,三角形PAB是等腰三角形.(Ⅰ)求证:平面PCD⊥平面PAC;(Ⅱ)求直线PB与平面PCD所成角的大小;(Ⅲ)求四棱锥P—ACDE的体积.【解析】(Ⅰ)证明:因为 ABC=45°,AB=2 ,BC=4,所以在 中,由余弦定理得: ,解得 ,所以 ,即 ,又PA⊥平面ABCDE,所以PA⊥ ,又PA ,所以 ,又AB‖CD,所以 ,又所以平面PCD⊥平面PAC;(Ⅱ)由(Ⅰ)知平面PCD⊥平面PAC,所以在平面PAC内,过点A作 于H,则,又AB‖CD,AB 平面 内,所以AB平行于平面 ,所以点A到平面 的距离等于点B到平面 的距离,过点B作BO⊥平面 于点O,则 为所求角,且 ,又容易求得 ,所以 ,即 = ,所以直线PB与平面PCD所成角的大小为 ;(Ⅲ)由(Ⅰ)知 ,所以 ,又AC‖ED,所以四边形ACDE是直角梯形,又容易求得 ,AC= ,所以四边形ACDE的面积为 ,所以四棱锥P—ACDE的体积为 = 。 2011新课标高考理科数学填空最后一题的详细解题过程。 y=c 2aa/sinA=b/sinB=c/sinC=2y=2*sinC 4sinA=2*sin(180-60-A) 4sinA=5sinA √3cosA最大值为2√7 2007年高考全国卷1数学最后一题的第二问,怎么求Bn通项 问题你也要贴出来把!!! 2009年全国高考理科数学卷第二卷的第11题怎么做?请帮忙 不要做了 都高考完了 还做个鸟啊 好好玩 玩了就出成绩了~~