2017年四川高考使用全国Ⅲ卷,即新课标三卷,全国丙卷,丙卷一般比甲卷和乙卷简单一些。但不会因考题差别导致教材差别,一切都是遵照高考大纲命题的。高考后试卷不能拿走,高考试卷会密封后送到指定的阅卷场所,阅卷后的高考试卷属于高考档案的一种,要存档保留一定年限的,考生是无法再次接触到自己的高考试卷的。数学:首先有一些基础的需要大家了解,我们评价一套试卷有两个维度,第一就是关于命题的难度与区分度。第二个就是稳定性,也就是我们所说的延续性,以及创新性部分的内容。通常首先需要同学去了解,也就是关于命题难度的部分,其实在难度比例分配上有严格要求,简单题目、中档题、难题,各自占的比例,在每年的试卷命题当中变换不是特别大,我们需要在相对稳定的难度分布中,更加关注的是将区分度区分出来。语文:全国卷共有三套卷子,分别为甲、乙、丙。之前我们讲过全国甲卷和乙卷,全国丙又是哪套呢?全国甲卷是以前的全国2卷,全国乙是以前的全国1卷。接下来是全国丙卷,考的地区是重庆、四川、广西、陕西。2016年4月7号国家教育部召开了一个高考语文作文的会议,确定了三套的全国卷,这三套全国卷有什么不一样呢?我刚才说了甲卷就是以前的全国二卷,乙卷就是全国一卷,没有什么不同。这时候新增丙卷是要点,因为重庆等四个省份相对来说考生的人数占的比重非常大,与此同时较于贵州、青海、西藏,考全国甲卷的地区的同学他的教学相对好一点,这时候就增加了一个丙卷。就是这样的差别。历史:今年高考在全国历史考卷方面出了一些调整,以前全国卷以两套卷子为主,今年变成了三套,以前全国卷Ⅰ卷,现在变成乙卷,以前全国卷Ⅱ卷变成甲卷,今年新增加了全国丙卷。下边我们看看新增加的这套卷子的风格和特点、总体难度评价,趋势发展,或者这套卷子到底有没有体现热点。政治:今年是第一次有新课标丙卷,那么使用的省份大概有哪些呢?有四川、重庆、广西、陕西地区。现在全国都比较关注这套新课标丙卷,整体难度是偏容易的,会有一些比较有争议、有难度的题,但是从试卷的整体水平来看是偏简单的。所以对于整个新课标参加丙卷地区考生来讲,不管你是已经参加过考试的这个考生,还是即将要走入高三,面临考试的考生,那么在未来复习的时候都一定要注意一些基础的知识。

2017数学高考四川(2017年重庆数学高考最后一题)

2017理科数学高考真题及答案

一、选择题1.已知函数f(x)=2x3-x2 m的图象上A点处的切线与直线x-y 3=0的夹角为45°,则A点的横坐标为(  )A.0     B.1     C.0或  D.1或答案:C 命题立意:本题考查导数的应用,难度中等.解题思路:直线x-y 3=0的倾斜角为45°,切线的倾斜角为0°或90°,由f′(x)=6x2-x=0可得x=0或x=,故选C.易错点拨:常见函数的切线的斜率都是存在的,所以倾斜角不会是90°.2.设函数f(x)=则满足f(x)≤2的x的取值范围是(  )A.[-1,2] B.[0,2]C.[1, ∞) D.[0, ∞)答案:D 命题立意:本题考查分段函数的相关知识,求解时可分为x≤1和x>1两种情况进行求解,再对所求结果求并集即得最终结果.解题思路:若x≤1,则21-x≤2,解得0≤x≤1;若x>1,则1-log2 x≤2,解得x>1,综上可知,x≥0.故选D.3.函数y=x-2sin x,x的大致图象是(  )答案:D 解析思路:因为函数为奇函数,所以图象关于原点对称,排除A,B.函数的导数为f′(x)=1-2cos x,由f′(x)=1-2cos x=0,得cos x=,所以x=.当00,函数单调递增,所以当x=时,函数取得极小值.故选D.4.已知函数f(x)满足:当x≥4时,f(x)=2x;当x0时,f(x)=x2-x=2-≥-,所以要使函数g(x)=f(x)-m有三个不同的零点,只需直线y=m与函数y=f(x)的图象有三个交点即可,如图.只需-10.在实数集R中定义一种运算“*”,对任意给定的a,bR,a*b为确定的实数,且具有性质:(1)对任意a,bR,a*b=b*a;(2)对任意aR,a*0=a;(3)对任意a,bR,(a*b)*c=c*(ab) (a*c) (c*b)-2c.关于函数f(x)=(3x)*的性质,有如下说法:函数f(x)的最小值为3;函数f(x)为奇函数;函数f(x)的单调递增区间为,.其中所有正确说法的个数为(  )A.0 B.1 C.2 D.3答案:B 解题思路:f(x)=f(x)*0=*0=0]3x× [(3x)*0] )-2×0=3x× 3x =3x 1.当x=-1时,f(x)0,得x>或xf成立的x取值范围是(  )A. B.C. D.答案:B 解析思路:因为偶函数的图象关于y轴对称,在区间[0, ∞)单调递减,所以f(x)在(-∞,0]上单调递增,若f(2x-1)>f,则-<2x-1<,

2017年重庆数学高考最后一题

2008年高考(重庆卷)数学(理科)解析

满分150分。考试时间120分钟。

注意事项:

1.答题前,务必将自己的姓名、准考证号填写在答题卡规定的位置上。

2.答选择题时,必须使用2B铅笔将答题卡上对应题目的答案标号涂黑。如需改动,用橡皮擦擦干净后,再选涂其他答案标号。

3.答非选择题时,必须使用0.5毫米黑色签字笔,将答案书写在答题卡规定的位置上。

4.所有题目必须在答题卡上作答,在试题卷上答题无效。

5.考试结束后,将试题卷和答题卡一并交回。

参考公式:

如果事件A、B互斥,那么   P(A B)=P(A) P(B)  

如果事件A、B相互独立,那么P(A·B)=P(A)·P(B)

如果事件A在一次试验中发生的概率是P,那么n次独立重复试验中恰好发生k次的概率  

Pn(K)=km­­­­­­­­Pk(1-P)n-k

以R为半径的球的体积V= πR3.

一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个备选项中,只有一项是符合题目要求的.

(1)复数1 =

(A)1 2i (B)1-2i (C)-1 (D)3

【标准答案】A

【试题解析】1 =1

【高考考点】复数的概念与运算。

【易错提醒】计算失误。

【学科网备考提示】复数的概念与计算属于简单题,只要考生细心一般不会算错。

(2) 设 是整数,则“ 均为偶数” 是“ 是偶数”的

(A)充分而不必要条件 (B)必要而不充分条件

(C)充要条件 (D)既不充分也不必要条件

【标准答案】A

【试题解析】 均为偶数 是偶数 则充分; 是偶数则 均为偶数或者 均为奇数即 是偶数 均为偶数 则不必要,故选A

【高考考点】利用数论知识然后根据充要条件的概念逐一判定

【易错提醒】 是偶数则 均为偶数或者 均为奇数

【学科网备考提示】 均为偶数 是偶数,易得;否定充要时只要举例: ,即可。

(3)圆O1: 和圆O2: 的位置关系是

(A)相离 (B)相交 (C)外切 (D)内切

【标准答案】B

【试题解析】 , , 则

【高考考点】圆的一般方程与标准方程以及两圆位置关系

【易错提醒】 相交

【学科网备考提示】圆的一般方程与标准方程互化,此题告诉我们必须全面掌握每一个知识点。

(4)已知函数y= 的最大值为M,最小值为m,则 的值为

(A) (B) (C) (D)

【标准答案】C

【试题解析】定义域 ,当且仅当 即 上式取等号,故最大值为 最小值为

【高考考点】均值定理

【易错提醒】正确选用

【学科网备考提示】教学中均值定理变形应高度重视和加强训练

(5)已知随机变量 服从正态分布N(3,a2),则 =

(A) (B) (C) (D)

【标准答案】D

【试题解析】 服从正态分布N(3,a2) 则曲线关于 对称,

【高考考点】正态分布的意义和主要性质。

【易错提醒】正态分布 性质:曲线关于 对称

【学科网备考提示】根据正态分布 性质是个较少考查的知识点,尽管此题只考查概念,但是由于考生不注意全面掌握每一个知识点,因而错误率相当高。此题告诉我们必须全面掌握每一个知识点。

(6) 若定义在 上的函数 满足:对任意 有 则下列说法一定正确的是

(A) 为奇函数 (B) 为偶函数(C) 为奇函数(D) 为偶函数

(8)已知双曲线 (a>0,b>0)的一条渐近线为 ,离心率 ,则双曲线方程为

(A) - =1 (B)

(C) (D)

【标准答案】C

【试题解析】 , , 所以

【高考考点】双曲线的几何性质

【易错提醒】消去参数

【学科网备考提示】圆锥曲线的几何性质是高考必考内容

(9)如解(9)图,体积为V的大球内有4个小球,每个小球的球面过大球球心且与大球球面有且只有一个交点,4个小球的球心是以大球球心为中心的正方形的4个顶点.V1为小球相交部分(图中阴影部分)的体积,V2为大球内、小球外的图中黑色部分的体积,则下列关系中正确的是

(A)V1= (B) V2=

(C)V1> V2 (D)V10) ,则 .

【标准答案】3

【试题解析】

【高考考点】指数与对数的运算

【易错提醒】

【学科网备考提示】加强计算能力的训练,训练准确性和速度

(14)设 是等差数列{ }的前n项和, , ,则 .

【标准答案】-72

【试题解析】 ,

【高考考点】等差数列求和公式以及等差数列的性质的应用。

【易错提醒】等差数列的性质

【学科网备考提示】此题不难,但是应当注意不要因为计算失误而丢分

(15)直线 与圆 相交于两点A,B,弦AB的中点为(0,1),则直线 的方程为 。

【标准答案】

【试题解析】设圆心 ,直线 的斜率为 , 弦AB的中点为 , 的斜率为 , 则 ,所以 由点斜式得

【高考考点】直线与圆的位置关系

【易错提醒】

【学科网备考提示】重视圆的几何性质

(16)某人有4种颜色的灯泡(每种颜色的灯泡足够多),要在如题(16)图所示的6个点A、B、C、A1、B1、C1上各装一个灯泡,要求同一条线段两端的灯泡不同色,则每种颜色的灯泡都至少用一个的安装方法共有 种(用数字作答).

【标准答案】216

【试题解析】 则底面共 , ,

,由分类计数原理得上底面共 ,由分步类计数原理得共有

【高考考点】排列与组合的概念,并能用它解决一些实际问题。

【易错提醒】掌握排列组合的一些基本方法,做题时从特殊情况分析,可以避免错误。

【学科网备考提示】排列组合的基本解题方法

三、解答题:本大题共6小题,共76分,解答应写出文字说明、证明过程或演算步骤.

(17)(本小题满分13分,(Ⅰ)小问6分,(Ⅱ)小问7分)

设 的内角A,B,C的对边分别为a,b,c,且A= ,c=3b.求:

(Ⅰ) 的值;(Ⅱ)cotB cot C的值.

【标准答案】 解:(Ⅰ)由余弦定理得

= 故

(Ⅱ)解法一: = =由正弦定理和(Ⅰ)的结论得

解法二:由余弦定理及(Ⅰ)的结论有=

故同理可得从而

【高考考点】本小题主要考查余弦定理、三角函数的基本公式、三角恒等变换等基本知识,以及推理和运算能力。 三角函数的化简通常用到降幂、切化弦、和角差角公式的逆运算。

【易错提醒】正余切转化为正余

【学科网备考提示】三角函数在高考题中属于容易题,是我们拿分的基础。。

(18)(本小题满分13分,(Ⅰ)小问5分,(Ⅱ)小问8分.)

甲、乙、丙三人按下面的规则进行乒乓球比赛:第一局由甲、乙参加而丙轮空,以后每一局由前一局的获胜者与轮空者进行比赛,而前一局的失败者轮空.比赛按这种规则一直进行到其中一人连胜两局或打满6局时停止.设在每局中参赛者胜负的概率均为 ,且各局胜负相互独立.求:(Ⅰ) 打满3局比赛还未停止的概率;(Ⅱ)比赛停止时已打局数 的分别列与期望E .

【标准答案】 解:令 分别表示甲、乙、丙在第k局中获胜.

(Ⅰ)由独立事件同时发生与互斥事件至少有一个发生的概率公式知,打满3局比赛还未停止的概率为

(Ⅱ) 的所有可能值为2,3,4,5,6,且

故有分布列

2

3

4

5

6

P从而 (局).

【高考考点】本题主要考查独立事件同时发生、互斥事件、分布列、数学期望的概念和计算,考查分析问题及解决实际问题的能力。

【易错提醒】连胜两局或打满6局时停止

【学科网备考提示】重视概率应用题,近几年的试题必有概率应用题。

(19)(本小题满分13分,(Ⅰ)小问6分,(Ⅱ)小问7分.)

如题(19)图,在 中,B= ,AC= ,D、E两点分别在AB、AC上.使

,DE=3.现将 沿DE折成直二角角,求:

(Ⅰ)异面直线AD与BC的距离;

(Ⅱ)二面角A-EC-B的大小(用反三角函数表示).

【标准答案】 解法一:(Ⅰ)在答(19)图1中,因 ,故BE∥BC.又因B=90°,从而AD⊥DE.

在第(19)图2中,因A-DE-B是直二面角,AD⊥DE,故AD⊥底面DBCE,从

而AD⊥DB.而DB⊥BC,故DB为异面直线AD与BC的公垂线.

下求DB之长.在答(19)图1中,由 ,得

又已知DE=3,从而

y、z轴的正方向建立空间直角坐标系,则D(0,0,0),A(0,0,4), ,E(0,3,0). 过D作DF⊥CE,交CE的延长线

于F,连接AF.

设 从而

,有 ①

又由 ②

联立①、②,解得

因为 ,故 ,又因 ,所以 为所求的二面角A-EC-B的平面角.因 有 所以

因此所求二面角A-EC-B的大小为

【高考考点】本题主要考查直线、直线与平面、平面与平面的位置关系、异面直线间的距离等知识,考查空间想象能力和思维能力,利用综合法或向量法解决立体几何问题的能力。

【易错提醒】

【学科网备考提示】立体几何中的平行、垂直、二面角是考试的重点。

(20)(本小题满分13分.(Ⅰ)小问5分.(Ⅱ)小问8分.)

设函

(Ⅰ)用 分别表示 和 ;

(Ⅱ)当bc取得最小值时,求函数g(x)= 的单调区间。

【标准答案】解:(Ⅰ)因为

又因为曲线 通过点(0, ),故

又曲线 在 处的切线垂直于 轴,故 即 ,因此

(Ⅱ)由(Ⅰ)得

故当 时, 取得最小值- .此时有

从而

所以 令 ,解得

由此可见,函数 的单调递减区间为(-∞,-2)和(2, ∞);单调递增区间为(-2,2).

【高考考点】本题主要考查导数的概念和计算、利用导数研究函数的单调性、利用单调性求最值以及不等式的性质。

【易错提醒】不能求 的最小值

【学科网备考提示】应用导数研究函数的性质,自2003年新教材使用以来,是常考不衰的考点。

(21)(本小题满分12分,(Ⅰ)小问5分,(Ⅱ)小问7分.)

如题(21)图, 和 的平面上的两点,动点 满足:

(Ⅰ)求点 的轨迹方程:

(Ⅱ)若

由方程组 解得 即P点坐标为

【高考考点】本题主要考查椭圆的方程及几何性质、 等基础知识、基本方法和分析问题、解决问题的能力。

【易错提醒】不能将条件 与 联系起来

【学科网备考提示】重视解析几何条件几何意义教学与训练。

(22)(本小题满分12分,(Ⅰ)小问5分,(Ⅱ)小问7分.)设各项均为正数的数列{an}满足 .

(Ⅰ)若 ,求a3,a4,并猜想a2cos的值(不需证明);

(Ⅱ)记 对n≥2恒成立,求a2的值及数列{bn}的通项公式.

【标准答案】 解:(Ⅰ)因

由此有 ,故猜想 的通项为

对 求和得 ⑦

由题设知

即不等式22k 1< 对k N*恒成立.但这是不可能的,矛盾.

因此 ,结合③式知, 因此a2=2*2= 将 代入⑦式得 =2- (n N*),

所以 = =22- (n N*)

【高考考点】本题主要考查等比数列的求和、数学归纳法、不等式的性质,综合运用知识分析问题和解决问题的能力。

【易错提醒】如何证明,选择方法很重要。本题(Ⅱ)证明要会熟练的使用不等式放宿技巧。

【学科网备考提示】这种题不仅要求考生有很好的思维、推理能力;而且平时做题要善于对数列与不等式的放宿技巧要非常熟练。