高考数学必考知识点归纳如下:

数学高考知识点归纳总结(数学高考知识点归纳总结基础)

1、平面向量与三角函数、三角变换及其应用,这一部分是高考的重点但不是难点,主要出一些基础题或中档题。

2、概率和统计,这部分和生活联系比较大,属应用题。3、考查圆锥曲线的定义和性质,轨迹方程问题、含参问题、定点定值问题、取值范围问题,通过点的坐标运算解决问题。

4、考查集合运算、函数的有关概念定义域、值域、解析式、函数的极限、连续、导数。

5、证明平行或垂直,求角和距离。主要考察对定理的熟悉程度、运用程度。

数学高考知识点归纳总结基础

高中数学涉及的知识点很多,需要把高中三年的数学知识点 总结 起来,这样比较有利于复习,下面是我为大家整理的高考数学知识点归纳整理,希望对大家有所帮助! 高考数学知识点归纳整理1 考数学知识点:两角和公式 两角和公式 sin(A B)=sinAcosB cosAsinB sin(A-B)=sinAcosB-sinBcosA cos(A B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB sinAsinB tan(A B)=(tanA tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1 tanAtanB) cot(A B)=(cotAcotB-1)/(cotB cotA) cot(A-B)=(cotAcotB 1)/(cotB-cotA) 倍角公式 tan2A=2tanA/(1-tan2A) cos2a=cos2a-sin2a=2cos2a-1=1-2sin2 正弦定理 a/sinA=b/sinB=c/sinC=2R 注: 其中 R 表示三角形的外接圆半径 余弦定理 b2=a2 c2-2accosB 注:角B是边a和边c的夹角 圆的标准方程 (x-a)2 (y-b)2=r2 注:(a,b)是圆心坐标 圆的一般方程 x2 y2 Dx Ey F=0 注:D2 E2-4F>0 抛物线标准方程 y2=2px y2=-2px x2=2py x2=-2py 高考数学知识点:圆的切线方程 (1)已知圆 . ①若已知切点 在圆上,则切线只有一条,利用垂直关系求斜率 ②过圆外一点的切线方程可设为 ,再利用相切条件求k,这时必有两条切线,注意不要漏掉平行于y轴的切线. ③斜率为k的切线方程可设为 ,再利用相切条件求b,必有两条切线. (2)已知圆 .过圆上的 点的切线方程为 高考数学知识点:线线平行常用 方法 总结 (1)定义:在同一平面内没有公共点的两条直线是平行直线。 (2)公理:在空间中平行于同一条直线的两只直线互相平行。 (3)初中所学平面几何中判断直线平行的方法 (4)线面平行的性质:如果一条直线和一个平面平行,经过这条直线的平面和这个平面的相交,那么这条直线就和两平面的交线平行。 (5)线面垂直的性质:如果两直线同时垂直于同一平面,那么两直线平行。 (6)面面平行的性质:若两个平行平面同时与第三个平 面相 交,则它们的交线平行。 高考数学知识点归纳整理2 高考数学知识点总结精华一 一、高考数学中有函数、数列、三角函数、平面向量、不等式、立体几何等九大章节 主要是考函数和导数,因为这是整个高中阶段中最核心的部分,这部分里还重点考察两个方面:第一个函数的性质,包括函数的单调性、奇偶性;第二是函数的解答题,重点考察的是二次函数和高次函数,分函数和它的一些分布问题,但是这个分布重点还包含两个分析。 二、平面向量和三角函数 对于这部分知识重点考察三个方面:是划减与求值,第一,重点掌握公式和五组基本公式;第二,掌握三角函数的图像和性质,这里重点掌握正弦函数和余弦函数的性质;第三,正弦定理和余弦定理来解三角形,这方面难度并不大。 高考数学知识点总结精华二 三、数列 数列这个板块,重点考两个方面:一个通项;一个是求和。 四、空间向量和立体几何 在里面重点考察两个方面:一个是证明;一个是计算。 五、概率和统计 概率和统计主要属于数学应用问题的范畴,需要掌握几个方面:……等可能的概率;……事件;独立事件和独立重复事件发生的概率。 高考数学知识点总结精华三 六、解析几何 这部分内容说起来容易做起来难,需要掌握几类问题,第一类直线和曲线的位置关系,要掌握它的通法;第二类动点问题;第三类是弦长问题;第四类是对称问题;第五类重点问题,这类题往往觉得有思路却没有一个清晰的答案,但需要要掌握比较好的算法,来提高做题的准确度。 七、压轴题 同学们在最后的备考复习中,还应该把重点放在不等式计算的方法中,难度虽然很大,但是也切忌在试卷中留空白,平时多做些压轴题真题,争取能解题就解题,能思考就思考。 高考数学直线方程知识点:什么是直线方程 从平面解析几何的角度来看,平面上的直线就是由平面直角坐标系中的一个二元一次方程所表示的图形。求两条直线的交点,只需把这两个二元一次方程联立求解,当这个联立方程组无解时,两直线平行;有无穷多解时,两直线重合;只有一解时,两直线相交于一点。常用直线向上方向与 X 轴正向的 夹角( 叫直线的倾斜角 )或该角的正切(称直线的斜率)来表示平面上直线(对于X轴)的倾斜程度。可以通过斜率来判断两条直线是否互相平行或互相垂直,也可计算它们的交角。直线与某个坐标轴的交点在该坐标轴上的坐标,称为直线在该坐标轴上的截距。直线在平面上的位置,由它的斜率和一个截距完全确定。在空间,两个平面相交时,交线为一条直线。在空间直角坐标系中,用两个表示平面的三元一次方程联立,作为它们相交所得直线的方程。 高考数学知识点归纳整理3 1、空间立体几何的结构。包括棱柱,棱锥和棱台的结构特征。圆柱圆锥圆台和球的结构特征。 2、圆柱侧面积,圆锥侧面积,圆台侧面积,直棱柱侧面积,正棱柱侧面积和正棱台侧面积以及球的面积的求法。 3、柱、锥、台、球体积公式。 4、三视图和直观图。 5、线面平行的判断和性质。线面平行的判定定理、面面平行的判定定理、线面平行的性质定理、面面平行的性质定理。线面垂直的判定和性质。线面垂直的判定定理、面面垂直的判定定理;线面垂直的性质定理、面面垂直的性质定理。 6、统计:用样本估计总体。用样本的频率分布,估计总体的频率分布、用样本的数字特征估计总体的数字特征、方差、标准差。变量间的相关关系与两个变量的线性关系。 高考数学知识点归纳整理相关 文章 : ★ 高考数学必考知识点整理最新 ★ 高三数学必备知识点归纳 ★ 2022高考数学必考知识点考点总结大全 ★ 高考数学常考知识点整理大全 ★ 高考数学知识点总结大全 ★ 高中数学必考知识点归纳 ★ 高考数学知识点总结最新 ★ 高考数学常考知识点 ★ 高三数学第一轮复习知识点 ★ 高中数学必考知识点归纳大全 var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm.baidu.com/hm.js?3b57837d30f874be5607a657c671896b"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();

数学高考知识点归纳总结大全

高中数学是一门比较占分的科目,有繁多的公式和数值,让很多的同学感到头疼。下面我为大家整理的《高中数学知识点归纳总结及高中数学公式大全(完整版)》,仅供大家参考。 1.集合与函数 内容子交并补集,还有幂指对函数。性质奇偶与增减,观察图象最明显。复合函数式出现,性质乘法法则辨,若要详细证明它,还须将那定义抓。指数与对数函数,两者互为反函数。底数非1的正数,1两边增减变故。函数定义域好求。分母不能等于0,偶次方根须非负,零和负数无对数;正切函数角不直,余切函数角不平;其余函数实数集,多种情况求交集。两个互为反函数,单调性质都相同;图象互为轴对称,Y=X是对称轴;求解非常有规律,反解换元定义域;反函数的定义域,原来函数的值域。幂函数性质易记,指数化既约分数;函数性质看指数,奇母奇子奇函数,奇母偶子偶函数,偶母非奇偶函数;图象第一象限内,函数增减看正负。 2.三角函数 三角函数是函数,象限符号坐标注。函数图象单位圆,周期奇偶增减现。同角关系很重要,化简证明都需要。正六边形顶点处,从上到下弦切割;中心记上数字1,连结顶点三角形;向下三角平方和,倒数关系是对角,变成税角好查表,化简证明少不了。二的一半整数倍,奇数化余偶不变,将其后者视锐角,符号原来函数判。两角和的余弦值,化为单角好求值,余弦积减正弦积,换角变形众公式。和差化积须同名,互余角度变名称。计算证明角先行,注意结构函数名,保持基本量不变,繁难向着简易变。逆反原则作指导,升幂降次和差积。条件等式的证明,方程思想指路明。万能公式不一般,化为有理式居先。公式顺用和逆用,变形运用加巧用;1加余弦想余弦,1减余弦想正弦,幂升一次角减半,升幂降次它为范;三角函数反函数,实质就是求角度,先求三角函数值,再判角取值范围;利用直角三角形,形象直观好换名,简单三角的方程,化为最简求解集; 3.不等式 解不等式的途径,利用函数的性质。对指无理不等式,化为有理不等式。高次向着低次代,步步转化要等价。数形之间互转化,帮助解答作用大。证不等式的方法,实数性质威力大。求差与0比大小,作商和1争高下。直接困难分析好,思路清晰综合法。非负常用基本式,正面难则反证法。还有重要不等式,以及数学归纳法。图形函数来帮助,画图建模构造法。 4.数列 等差等比两数列,通项公式N项和。两个有限求极限,四则运算顺序换。数列问题多变幻,方程化归整体算。数列求和比较难,错位相消巧转换,取长补短高斯法,裂项求和公式算。归纳思想非常好,编个程序好思考:一算二看三联想,猜测证明不可少。还有数学归纳法,证明步骤程序化:首先验证再假定,从K向着K加1,推论过程须详尽,归纳原理来肯定。 5.复数 虚数单位i一出,数集扩大到复数。一个复数一对数,横纵坐标实虚部。对应复平面上点,原点与它连成箭。箭杆与X轴正向,所成便是辐角度。箭杆的长即是模,常将数形来结合。代数几何三角式,相互转化试一试。代数运算的实质,有i多项式运算。i的正整数次慕,四个数值周期现。一些重要的熟记巧用得结果。虚实互化本领大,复数相等来转化。利用方程思想解,注意整体代换术。几何运算图上看,加法平行四边形,减法三角法则判;乘法除法的运算,逆向顺向做旋转,伸缩全年模长短。三角形式的运算,须将辐角和模辨。利用棣莫弗公式,乘方开方极方便。辐角运算很奇特,和差是由积商得。四条性质离不得,相等和模与共轭,两个不会为实数,比较大小要不得。复数实数很密切,须注意本质区别。 6.排列、组合、二项式定理 加法乘法两原理,贯穿始终的法则。与序无关是组合,要求有序是排列。两个公式两性质,两种思想和方法。归纳出排列组合,应用问题须转化。排列组合在一起,先选后排是常理。特殊元素和位置,首先注意多考虑。不重不漏多思考,捆绑插空是技巧。排列组合恒等式,定义证明建模试。关于二项式定理,中国杨辉三角形。两条性质两公式,函数赋值变换式。 7.立体几何 点线面三位一体,柱锥台球为代表。距离都从点出发,角度皆为线线成。垂直平行是重点,证明须弄清概念。线线线面和面面、三对之间循环现。方程思想整体求,化归意识动割补。计算之前须证明,画好移出的图形。立体几何辅助线,常用垂线和平面。射影概念很重要,对于解题最关键。异面直线二面角,体积射影公式活。公理性质三垂线,解决问题一大片。 8.平面解析几何 有向线段直线圆,椭圆双曲抛物线,参数方程极坐标,数形结合称典范。笛卡尔的观点对,点和有序实数对,两者—一来对应,开创几何新途径。两种思想相辉映,化归思想打前阵;都说待定系数法,实为方程组思想。三种类型集大成,画出曲线求方程,给了方程作曲线,曲线位置关系判。四件工具是法宝,坐标思想参数好;平面几何不能丢,旋转变换复数求。解析几何是几何,得意忘形学不活。图形直观数入微,数学本是数形学