理科高考总分是多少分?
目前尚未正式公布。
与2013年比估计不会有变化。
以下摘自:
浙江省2013年普通高校招生工作实施意见
(一)考试类别及科目
。
(1)文理科考试科目分三类设置。
一类考试科目为:语文、数学(文/理)、外语、综合(文/理)、自选模块;
二类考试科目为:语文、数学(文/理)、外语、综合(文/理);
三类考试科目为:语文、数学(文/理)、外语、技术(信息技术/通用技术)。
(二)分值
、数学和外语三科满分各为150分,其中英语笔试满分120分,英语听力考试满分30分;综合(文/理)满分300分;自选模块满分60分;技术满分100分,由通用技术和信息技术两科目成绩按各占50%的比例合成。
(含兼报)的不同考试类别分别合成。文理科一类为“3 综合 自选模块”的总分,满分为810分;二类为“3 综合”的总分,满分为750分;三类为“3 技术”的总分,满分为550分。
几何体的定义及分类
占据着空间的有限部分,如果只考虑这些物体的形状和大小,而不考虑其他因素,那么由这些物体抽象出来的空间图形就叫空间几何体。也叫立体。按构成体的主要元素---面的特点,可以把体分成两类:第一类是有曲面参与其中的曲面几何体,如:圆柱体、球体。第二类是纯由平面围成的平面几何体,即由若干个平面多边形围成的多面体,如棱柱体、正方体。 一般来说一个几何体是由面、交线(面与面相交处)、交点(交线的相交处或是曲面的收敛处)而构成的。对于几何体来说,最主要的构成要素是面。一个几何体可以没有交线,没有交点这些要素,但不可能没有面。很容易想到,由一个面构成的几何体就是球体。这里的球体不要理解成只是圆球体,还可以是椭球体,甚至是不规则的曲面几何体。只包含一个交点和一条交线的体是圆锥体。
几何体的性质及计算方法
平面几何、立体几何、非欧几何、罗氏几何、黎曼几何、解析几何、射影几何、仿射几何、代数几何、微分几何、计算几何。
几何这个词最早来自于阿拉伯语,指土地的测量,即测地术。后来拉丁语音译为“geometria”。中文中的“几何”一词,最早是在明代利玛窦、徐光启合译《几何原本》时,由徐光启所创。
当时并未给出所依根据,后世多认为一方面几何可能是拉丁化的希腊语GEO的音译,另一方面由于《几何原本》中也有利用几何方式来阐述数论的内容,也可能是magnitude(多少)的意译,所以一般认为几何是geometria的音、意并译。
1607年出版的《几何原本》中关于几何的译法在当时并未通行,同时代也存在着另一种译名——形学,如狄考文、邹立文、刘永锡编译的《形学备旨》,在当时也有一定的影响。
在1857年李善兰、伟烈亚力续译的《几何原本》后9卷出版后,几何之名虽然得到了一定的重视,但是直到20世纪初的时候才有了较明显的取代形学一词的趋势,如1910年《形学备旨》第11次印刷成都翻刊本徐树勋就将其改名为《续几何》。直至20世纪中期,已鲜有“形学”一词的使用出现。扩展资料
最早的几何学当属平面几何。平面几何就是研究平面上的直线和二次曲线(即圆锥曲线,就是椭圆、双曲线和抛物线)的几何结构和度量性质(面积、长度、角度)。平面几何采用了公理化方法,在数学思想史上具有重要的意义。
平面几何的内容也很自然地过渡到了三维空间的立体几何。为了计算体积和面积问题,人们实际上已经开始涉及微积分的最初概念。
笛卡尔引进坐标系后,代数与几何的关系变得明朗, 且日益紧密起来。这就促使了解析几何的产生。解析几何是由笛卡尔、费马分别独立创建的。这又是一次具有里程碑意义的事件。
从解析几何的观点出发,几何图形的性质可以归结为方程的分析性质和代数性质。几何图形的分类问题(比如把圆锥曲线分为三类),也就转化为方程的代数特征分类的问题,即寻找代数不变量的问题。
立体几何归结为三维空间解析几何的研究范畴,从而研究二次曲面(如球面,椭球面、锥面、双曲面,鞍面)的几何分类问题,就归结为研究代数学中二次型的不变量问题。
参考资料来源:百度百科-几何
参考资料来源:百度百科-几何学