高数(一)比高数(二)难,因为高数一的内容多,知识掌握要求要比高数二要高,大部分包含了高数二的内容。考试内容,区分如下:

成人高考高数一,成人高考高数一和二区别

1、区别主要体现在两个方面:其一是在共有知识内容方面,同一章中要求掌握的知识点,或同一知识点要求掌握的程度不尽相同。

如在一元函数微分学中,《高等数学》(一)要求掌握求反函数的导数、掌握求由参数方程所确定的函数的求导方法,会求简单函数的n阶导数,理解罗尔定理、拉格朗日中值定理,但上述知识点对《高等数学》(二)并不做要求;又如在一元函数积分学中,《高等数学》(一)要求掌握三角换元求不定积分,其中包括正弦变换、正切变换和正割变换,而《高等数学》(二)对正割变换不做考核要求。其二是在不同的知识内容方面,《高等数学》(一)考核内容中有二重积分,而《高等数学》(二)对二重积分并不做考核要求;再有《高等数学》(一)有无穷级数、常微分方程,高数(二)均不做要求。从试卷中可以看出,高等数学(一)比《高等数学》(二)多出来的这部分知识点,在考题中大约能占到30%的比例。共计45分左右。所以理科、工科类考生应按照《大纲》的要求全面认真复习。

2、无论是《高数》(一),还是《高数》(二),总的来讲试题考查得都较全面,试题分布较合理,主要贯穿极限、导数、积分这条主线。在考查基本概念的基础上,以考查基本计算能力为主,大多数考题都是常规计算题。

3、《高数》(一)主要是以《高数》为重点,约有7章内容,主要贯穿微分学和积分学这条主线,考生复习的重点也是微分学、积分学。《高数》(二)是经济类、管理类的必考科目,试题主要有两部分,一部分为高等数学内容,约占92%;另一部分是概率论初步,约占8%。

4、《高数》(一)和《高数》(二)的区别主要是对知识的掌握程度要求不同。《高数》(一)要求掌握求反函数的导数,掌握求由参数方程所确定的函数的求导方法,会求简单函数的n阶导数,要掌握三角换元、正弦变换、正切变换和正割变换。《高数》(二)只要求掌握正弦变换、正切变换等。从实际考试情况看,《高数》(一)一般比《高数》(二)多出约30%的考题,约占45分左右。有的考生考《高数》(一),但是跟着《高数》(二)的辅导听课,也是可行的,但考生必须把《高数》(二)没涉及的知识补上,不然就会白白丢了30%的分数。

5、在试卷最后的大题中,《高数》(一)和《高数》(二)也有一定的区别。《高数》(一)一般涉及导数的应用,如函数的性质和曲线形状、导数的几何意义、求曲线的切线方程和法线方程。定积分的应用主要是定积分的换元积分法的应用,用定积分换元积分法作证明题,还有定积分的几何应用,求平面图形的面积和平面图形绕坐标轴旋转所生成的旋转体的体积等。

成人高考高数一和二区别

区别一:主要内容不同。

《高数一》主要学数学分析,内容主要为微积分(含多元微分、重积分及常微分方程)和无穷级数等。

《高数二》主要学概率统计、线性代数等内容。

区别二:主要是对知识的掌握程度要求不同。

《高数》(一)要求掌握求反函数的导数,掌握求由参数方程所确定的函数的求导方法,会求简单函数的n阶导数,要掌握三角换元、正弦变换、正切变换和正割变换。《高数》(二)只要求掌握正弦变换、正切变换等。

从实际考试情况看,《高数》(一)一般比《高数》(二)多出约30%的考题,约占45分左右。有的考生考《高数》(一),但是跟着《高数》(二)的辅导听课,也是可行的,但考生必须把《高数》(二)没涉及的知识补上,不然就会白白丢了30%的分数。

成考专升本,成人高考组成部分,属国民教育系列,列入国家招生计划,国家承认学历,参加全国招生统一考试,各省、自治区统一组织录取。是为我国各类成人高等院校选拔合格的毕业生以进入更高层次学历教育的入学考试。

根据各地情况不一样,成人高考网上报名一般在每年的8月中旬至9月上旬,考生要到各区县指定地点进行现场确认,现场确认需要带网报号及身份证件,毕业证原件,复印件。

以陕西省为例:陕西省成考专升本报名一般在8月中旬考试,考试在10月12~13号左右。成考考试时间一般是在周末,为的就是不耽误在职人员工作时间。

一定要牢记报名时间,如果考生未按规定网上缴费,其报名无效,随后也将无法参加场确认和统一考试。

成人专升本

是指专科毕业后,离开学校后,参加全国统一的成人考试,每年与成人高考同时报名考试(每年10月期间),最后颁发的学历是成人本科学历(有学位)。 毕业证盖所学习高校章,证书上显示“成人教育脱产或函授”字样,国家承认,通常认为同等情况下,社会认可度低于普高本科甚至自考本科。

两者不同在于:统招专升本的学历是普通高校,第一学历是本科。成人的专升本的学历是成人。但是统招专升本一般仅限在原地区范围内,专业必须对口,学校的选择很少;成人专升本则可以选择原专科不同的专业,学校范围可遍布全国各地(具体看每年当地成考期间出版的招生简章),最后也有学位,可以考研。

参考资料:百度百科-成考专升本

高等数学和微积分的区别

一、性质不同

1、高等数学:相对于初等数学而言,数学的对象及方法较为繁杂的一部分;通常认为,高等数学是由微积分学,较深入的代数学、几何学以及它们之间的交叉内容所形成的一门基础学科。

2、微积分:是高等数学中研究函数的微分(Differentiation)、积分(Integration)以及有关概念和应用的数学分支。

二、主要内容不同

1、高等数学:主要内容包括:数列、极限、微积分、空间解析几何与线性代数、级数、常微分方程。

2、微积分:主要内容包括:切线、函数、极限、积分、微分。三、应用不同

1、高等数学:在中国理工科各类专业的学生(数学专业除外,数学专业学数学分析),学的数学较难,课本常称“高等数学”。

2、微积分:;文史科各类专业的学生,学的数学稍微浅一些,课本常称“微积分”。

参考资料来源:百度百科-高等数学

参考资料来源:百度百科-微积分