2010年全国高考一卷理科数学的最后一题的第二问。求详细解答 方法一:由题意可知:数列an单调递增而且有界,根据极限存在定理,可知道,必然会有一个极限h使得lim(n→∞)an=h,対原式两边取极限,有lim(n→∞)a(n 1)=lim(n→∞) (c-1/an ),可得c=h 1/h,显然h>a1,即h>1,又由题意有a(n 1)a1,代入递推式可知:c>2,然后设c=k 1/k,bn=1/(an-k),由于c>2,显然对于任意k>0且k≠1均满足,对递推式两边同时减去k,然后整理有:1/(a(n 1)-k)=(kan-k^2 k^2)/(an-k),继续化简有:b(n 1)=k k^2bn看,又b1=1/1-k,根据不动点或者构造等比数列,可知:bn=k^2(n-1)(1/1-k^2) k/1-k^2,从而an=[1-k^2/k^2(n-1) k] k,显然对于任意k>0且k≠1,1-k^2/k^2(n-1) k均递减且趋向于0,因此an也趋向于k,若klog2,e>1,所以a2=log2,4所以c3} (D){x|x -1或x 3}【答案】C【解析】因为集合 ,全集 ,所以【命题意图】本题考查集合的补集运算,属容易题.(2) 已知 (a,b∈R),其中i为虚数单位,则a b=(A)-1 (B)1 (C)2 (D)3【答案】B【解析】由 得 ,所以由复数相等的意义知 ,所以 1,故选B.【命题意图】本题考查复数相等的意义、复数的基本运算,属保分题。(3)在空间,下列命题正确的是(A)平行直线的平行投影重合(B)平行于同一直线的两个平面平行(C)垂直于同一平面的两个平面平行(D)垂直于同一平面的两条直线平行【答案】D【解析】由空间直线与平面的位置关系及线面垂直与平行的判定与性质定理可以得出答案。【命题意图】考查空间直线与平面的位置关系及线面垂直与平行的判定与性质,属基础题。(4)设f(x)为定义在R上的奇函式,当x≥0时,f(x)= 2x b(b为常数),则f(-1)=(A) 3 (B) 1 (C)-1 (D)-3【答案】D(7)由曲线y= ,y= 围成的封闭图形面积为[来源:ks5u.](A) (B) (C) (D)【答案】A【解析】由题意得:所求封闭图形的面积为 ,故选A。【命题意图】本题考查定积分的基础知识,由定积分求曲线围成封闭图形的面积。(8)某台小型晚会由6个节目组成,演出顺序有如下要求:节目甲必须排在第四位、节目乙不能排在第一位,节目丙必须排在最后一位,该台晚会节目演出顺序的编排方案共有(A)36种 (B)42种 (C)48种 (D)54种【答案】B可知当直线 平移到点(5,3)时,目标函式 取得最大值3;当直线 平移到点(3,5)时,目标函式 取得最小值-11,故选A。【命题意图】本题考查不等式中的线性规划知识,画出平面区域与正确理解目标函式 的几何意义是解答好本题的关键。(11)函式y=2x - 的影象大致是【答案】A【解析】因为当x=2或4时,2x - =0,所以排除B、C;当x=-2时,2x - = ,故排除D,所以选A。【命题意图】本题考查函式的图象,考查同学们对函式基础知识的把握程度以及数形结合的思维能力。(12)定义平面向量之间的一种运算“ ”如下,对任意的 , ,令,下面说法错误的是( ) 与 共线,则 ,有 D.【答案】B【解析】若 与 共线,则有 ,故A正确;因为 ,而,所以有 ,故选项B错误,故选B。【命题意图】本题在平面向量的基础上,加以创新,属创新题型,考查平面向量的基础知识以及分析问题、解决问题的能力。二、填空题:本大题共4小题,每小题4分,共16分.(13)执行右图所示的程式框图,若输入 ,则输出 的值为 .【答案】【解析】当x=10时,y= ,此时|y-x|=6;当x=4时,y= ,此时|y-x|=3;当x=1时,y= ,此时|y-x|= ;当x= 时,y= ,此时|y-x|= ,故输出y的值为 。【命题意图】本题考查程式框图的基础知识,考查了同学们的试图能力。【答案】【解析】由题意,设所求的直线方程为 ,设圆心座标为 ,则由题意知:,解得 或-1,又因为圆心在x轴的正半轴上,所以 ,故圆心座标为(3,0),因为圆心(3,0)在所求的直线上,所以有 ,即 ,故所求的直线方程为 。【命题意图】本题考查了直线的方程、点到直线的距离、直线与圆的关系,考查了同学们解决直线与圆问题的能力。(18)(本小题满分12分)已知等差数列 满足: , , 的前n项和为 .(Ⅰ)求 及 ;(Ⅱ)令bn= (n N*),求数列 的前n项和 .【解析】(Ⅰ)设等差数列 的公差为d,因为 , ,所以有,解得 ,所以 ; = = 。(Ⅱ)由(Ⅰ)知 ,所以bn= = = ,所以 = = ,即数列 的前n项和 = 。【命题意图】本题考查等差数列的通项公式与前n项和公式的应用、裂项法求数列的和,熟练数列的基础知识是解答好本类题目的关键。(19)(本小题满分12分)如图,在五棱锥P—ABCDE中,PA⊥平面ABCDE,AB‖CD,AC‖ED,AE‖BC, ABC=45°,AB=2 ,BC=2AE=4,三角形PAB是等腰三角形.(Ⅰ)求证:平面PCD⊥平面PAC;(Ⅱ)求直线PB与平面PCD所成角的大小;(Ⅲ)求四棱锥P—ACDE的体积.【解析】(Ⅰ)证明:因为 ABC=45°,AB=2 ,BC=4,所以在 中,由余弦定理得: ,解得 ,所以 ,即 ,又PA⊥平面ABCDE,所以PA⊥ ,又PA ,所以 ,又AB‖CD,所以 ,又所以平面PCD⊥平面PAC;(Ⅱ)由(Ⅰ)知平面PCD⊥平面PAC,所以在平面PAC内,过点A作 于H,则,又AB‖CD,AB 平面 内,所以AB平行于平面 ,所以点A到平面 的距离等于点B到平面 的距离,过点B作BO⊥平面 于点O,则 为所求角,且 ,又容易求得 ,所以 ,即 = ,所以直线PB与平面PCD所成角的大小为 ;(Ⅲ)由(Ⅰ)知 ,所以 ,又AC‖ED,所以四边形ACDE是直角梯形,又容易求得 ,AC= ,所以四边形ACDE的面积为 ,所以四棱锥P—ACDE的体积为 = 。 2011新课标高考理科数学填空最后一题的详细解题过程。 y=c 2aa/sinA=b/sinB=c/sinC=2y=2*sinC 4sinA=2*sin(180-60-A) 4sinA=5sinA √3cosA最大值为2√7 2007年高考全国卷1数学最后一题的第二问,怎么求Bn通项 问题你也要贴出来把!!! 2009年全国高考理科数学卷第二卷的第11题怎么做?请帮忙 不要做了 都高考完了 还做个鸟啊 好好玩 玩了就出成绩了~~

13年高考数学,2013年高考数学

2013年高考数学

这篇2013年广东高考理科数学试题的文章,是 特地为大家整理的,希望对大家有所帮助! 本试卷共4页,21小题,:,考生务必用黑色笔迹的钢笔或签字笔将自己的姓名和考生号、考场号、座位号填写在答题卡上。用2B铅笔讲试卷类型(A)填涂在答题卡相应的位置上。将条形码横贴在答题卡右上角“条形码粘贴处”。,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。不按以上要求作答的答案无效。,请先用2B铅笔填涂选做题的题组号对应的信息点,再作答。漏涂、错涂、多涂的,答案无效。,考试结束后,将试题与答题卡一并交回。参考公式:台体的体积公式V= (S1 S2 )h,其中S1,S2分别表示台体的上、下底面积,h表示台体的高。一、选择题:本大题共8小题,每小题5分,,={x∣x2 2x=0,x∈R},N={x∣x2-2x=0,x∈R},则M∪N=A. {0}B. {0,2}C. {-2,0}D{-2,0,2}=x3,y=2x,y=x2 1,y=2sinx中,奇函数的个数是A. . =2 4i,则在复平面内,z对应的点的坐标是A. (2,4)B.(2,-4)C. (4,-2)D(4,2) P123P则X的数学期望E(X)=A. B. 2C. D35.某四棱太的三视图如图1所示,则该四棱台的体积是A.4 B. C. D.66.设m,n是两条不同的直线,α,β是两个不同的平面,下列命题中正确的是A.若α⊥β,m α,n β,则m⊥ n B.若α∥β,m α,n β,则m∥nC.若m⊥ n,m α,n β,则α⊥β D.若m α,m∥n,n∥β,则α⊥β7.已知中心在原点的双曲线C的右焦点为F(3,0),离心率等于,则C的方程是A. = 1 B. = 1 C. = 1 D. = ≥4,集合X={1,2,3……,n}。令集合S={(x,y,z)|x,y,z∈X,且三条件xA.(y,z,w)∈s,(x,y,w) S B.(y,z,w)∈s,(x,y,w)∈S C. (y,z,w) s,(x,y,w)∈S D. (y,z,w) s,(x,y,w) S 二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分。(一)必做题(9~13题) x-2<0的解集为 。=kx lnx在点(1,k)处的切线平行于x轴,则k= 。,若输入n的值为4,则输出s的值为 。12,在等差数列{an}中,已知a3 a8=10,则3a5 a7=___13.给定区域: .令点集T=|(x0,y0)∈D|x0,y0∈Z,(x0,y0)是z=x y在D上取得值或最小值的点,则T中的点共确定____条不同的直线。(二)选做题(14-15题,考生只能从中选做一题)14(坐标系与参数方程选做题)已知曲线C的参数方程为 (t为参数),C在点(1,1)处的切线为L,一座标原点为极点,x轴的正半轴为极轴建立极坐标,.(几何证明选讲选做题)如图3,AB是圆O的直径,点C在圆O上,延长BC到D是BC=CD,过C作圆O的切线交AD于E。若AB=6,ED=2,则BC=、解答题:本大题共6小题,满分80分,解答需写出文字说明。证明过程和演算步骤。16.(本小题满分12分)已知函数f(x)= cos(x- ),XER。(1)求f(- )的值;(2)若cosθ= ,θE( ,2π),求f(2θ )。17.(本小题满分12分)某车间共有12名工人,随机抽取6名,他们某日加工零件个数的茎叶图如图4所示,其中茎为十位数,叶为个位数。(1)根据茎叶图计算样本均值;(2)日加工零件个数大于样本均值的工人为优秀工人。根据茎叶图推断该车间12名工人中有几名优秀工人?(3)从该车间12名工人中,任取2人,求恰有1名优秀工人的概率18(本小题满分4分)如图5,在等腰直角三角形ABC中,∠A =900 BC=6,D,E分别是AC,AB上的点,CD=BE= ,△ADE沿DE折起,得到如图6所示的四棱椎A’-BCDE,其中A’O=?3(1)证明:A’O⊥平面BCDE;(2)求二面角A’-CD-B的平面角的余弦值19.(本小题满分14分)设数列{an}的前n项和为Sn,已知a1=1, =an 1- n2 – n - ,n∈N.(1)求a2的值(2)求数列{an}的通项公式a1(3)证明:对一切正整数n,有 … <20.(本小题满分14分)已知抛物线c的顶点为原点,其焦点F(0,c)(c>0)到直线L:x-y-2=0的距离为 . 设P为直线L上的点,过点P做抛物线C的两条切线PA,PB,其中A,B为切点。(1)求抛物线C的方程;(2)当点P()x0,y0)为直线L上的定点时,求直线AB的方程;(3)当点P在直线L上移动时,求|AF||BF|的最小值21.(本小题满分14分)设函数f(x)=(x-1)ex-kx2(k∈R).(1)当k=1时,求函数f(x)的单调区间;(2)当k∈(1/2,1]时,求函数f(x)在[0,k]上的值M.

2013年高考数学全国卷2理科

无法比较,从往年来看,三套试卷在难度上是相当的,并不存在等级、难度上的划分。

不管学生做的是什么难度系数的题、得的分数高低,最后录取的依据是高校在学生所在地区的招生计划,以及学生在所在地区的排名。高考所谓的相对公平更多是体现在学生是和所在地区的所有考生一起竞争,竞争范围远远大于学校年级排名,基数更大,公平性相对更高。

全国卷目的在于保证人才选拔的公正性。全国卷分为全国甲卷、全国乙卷和全国丙卷。从2013年开始,新课标全国卷分为Ⅰ卷、Ⅱ卷。从2016年开始,新课标全国卷分为Ⅰ卷、Ⅱ卷、Ⅲ卷。并且从2016年开始,全国Ⅰ、Ⅱ、Ⅲ卷分别改称为全国乙、甲、丙卷。小语种(日语/俄语/法语/德语/西班牙语)高考统一使用全国卷,各省均无自主命题权,且不分甲、乙、丙卷。

参考资料来源:百度百科-全国卷