2017年的高考数学试题延续了近几年的命题风格,同时也在题目设置上进行了一些调整。

17年高考数学,17年高考数学和18年一样吗

2017年的高考数学试题延续了近几年的命题风格,同时也在题目设置上进行了一些调整。既注重考查考生对基础知识的掌握程度,符合教育部颁发的《高中数学课程标准》的要求,又在一定程度上加以适度创新,注重考查考生的数学思维和能力。

体现出命题人关注考生学习数学所具备的素养和潜力,倡导用数学的思维进行数学学习,感受数学的思维过程。2017年高考数学试题评析: 加强理性思维考查,突出创新应用。高考数学必考知识点归纳如下

1、平面向量与三角函数、三角变换及其应用,这一部分是高考的重点但不是难点,主要出一些基础题或中档题。2、概率和统计,这部分和生活联系比较大,属应用题。

3、考查圆锥曲线的定义和性质,轨迹方程问题、含参问题、定点定值问题、取值范围问题,通过点的坐标运算解决问题。

4、考查集合运算、函数的有关概念定义域、值域、解析式、函数的极限、连续、导数。

5、证明平行或垂直,求角和距离。主要考察对定理的熟悉程度、运用程度。

2017年高考数学

17.(12分) △ABC的内角A,B,C的对边分别为a,b,c,已知△ABC的面积为 (1)求sinBsinC; (2)若6cosBcosC=1,a=3,求△ABC的周长 18.(12分) 如图,在四棱锥P-ABCD中,AB//CD,且 (1)证明:平面PAB⊥平面PAD; (2)若PA=PD=AB=DC,,求二面角A-PB-C的余弦值. 19.(12分) 为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布N(μ,σ). (1)假设生产状态正常,记X表示一天内抽取的16个零件中其尺寸在(μ–3σ,μ 3σ)之外的零件数,求P(X≥1)及X的数学期望;学科&网 (2)一天内抽检零件中,如果出现了尺寸在(μ–3σ,μ 3σ)之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查. (ⅰ)试说明上述监控生产过程方法的合理性; (ⅱ)下面是检验员在一天内抽取的16个零件的尺寸: 经计算得,,其中xi为抽取的第i个零件的尺寸,i=1,2,…,16. 用样本平均数作为μ的估计值,用样本标准差s作为σ的估计值,利用估计值判断是否需对当天的生产过程进行检查?剔除之外的数据,用剩下的数据估计μ和σ(). 附:若随机变量Z服从正态分布N(μ,σ2),则P(μ–3σb>0),四点P1(1,1),P2(0,1),P3(–1,√3/2),P4(1,√3/2)中恰有三点在椭圆C上. (1)求C的方程; (2)设直线l不经过P2点且与C相交于A,–1,证明:l过定点. 21.(12分) 已知函数=ae^x (a﹣2)e^x﹣x. (1) 讨论的单调性; (2) 若有两个零点,求a的取值范围. (二)选考题:共10分。 请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分。 22.[选修4-4,坐标系与参数方程](10分) 在直角坐标系xOy中,曲线C的参数方程为(θ为参数),直线l的参数方程为. (1)若a=-1,求C与l的交点坐标; (2)若C上的点到l的距离的最大值为,求a. 23.[选修4—5:不等式选讲](10分) 已知函数f(x)=–x ax 4,g(x)=│x 1│ │x–1│. (1)当a=1时,求不等式f(x)≥g(x)的解集; (2)若不等式f(x)≥g(x)的解集包含[–1,1],求a的取值范围.

17年高考数学和18年一样吗

因为17年的计算量大。

数学题难度相当大,理综难度也超出了很多人的想象。物理大题的难度比较大,化学要比平时还要难,生物选修题考了平时很少复习的一个知识点。

所以当时很多同学的理综成绩都远远比不上平时的考试成绩。虽然说2019年的高考数学很难,但是其它科都还算简单,数学难度和2017年差不多,但是理综难度要偏简单,2017年高考难度要偏难。2017与2019年高考难度对比2017年的难是有规律的难,出题都比较符合考生们平时的训练,只不过是难度稍微加大了一些。但是2019年高考就不一样了,它不但很难,而且还考了很多新题型。2017年,数学理综都比较难,数学的难度很大,理综的难度也不小,当时全省的理综的平均分都压得很低。

在2019年考试中,只有数学特别难,理综不算特别难,英语也还算简单,总体的难度不算高。但是有一点,2019年的考生数量要比2017年要多,竞争压力很大。从各种角度分析,2017年与2019年的难度相当。