一、选择题:本大题共12小题,每小题5分,共60分。在每小题给出的的四个选项中,只有一个项是符合题目要求的。

2011山东高考数学

(1)设集合 , ,则

A. B. C. D.

解析: , ,答案应选A。

(2)复数 为虚数单位)在复平面内对应的点所在的象限为

A.第一象限 B.第二象限 C.第三象限 D.第四象限

解析: 对应的点为 在第四象限,答案应选D.

(3)若点 在函数 的图象上,则 的值为

A. B. C. D.

解析: , , ,答案应选D.

(4)不等式 的解集是

A. B. C. D.

解析:当 时,原不等式可化为 ,解得 ;当 时,原不等式可化为 ,不成立;当 时,原不等式可化为 ,解得 .综上可知 ,或 ,答案应选D。

另解1:可以作出函数 的图象,令 可得 或 ,观察图像可得 ,或 可使 成立,答案应选D。

另解2:利用绝对值的几何意义, 表示实数轴上的点 到点 与 的距离之和,要使点 到点 与 的距离之和等于10,只需 或 ,于是当 ,或 可使 成立,答案应选D。

(5)对于函数 , ,“ 的图象关于 轴对称”是“ 是奇函数”的

A充分不必要条件 B.必要不充分条件 C.充要条件 D.即不充分也不必要条件

解析:若 是奇函数,则 的图象关于 轴对称;反之不成立,比如偶函数 ,满足 的图象关于 轴对称,但不一定是奇函数,答案应选B。

(6)若函数 在区间 上单调递增,在区间 上单调递减,则

A. B. C. D.

解析:函数 在区间 上单调递增,在区间 上单调递减,

则 ,即 ,答案应选C。

另解1:令 得函数 在 为增函数,同理可得函数 在 为减函数,则当 时符合题意,即 ,答案应选C。

另解2:由题意可知当 时,函数 取得极大值,则 ,即 ,即 ,结合选择项即可得答案应选C。

另解3:由题意可知当 时,函数 取得最大值,

则 , ,结合选择项即可得答案应选C。

(7)某产品的广告费用 与销售额 的统计数据如下表:

广告费用 (万元)4 2 3 5

销售额 (万元)49 26 39 54

根据上表可得回归方程 中的 为9.4,据此模型预报广告费用为6万元是销售额为

A.6 .6万元 B. 65.5万元 C. 67.7万元 D. 72.0万元

解析:由题意可知 ,则 ,答案应选B。

(8)已知双曲线 的两条渐近线均和圆 相切,且双曲线的右焦点为圆 的圆心,则该双曲线的方程为

A. B. C. D.

解析:圆 , 而 ,则 ,答案应选A。

(9)函数 的图象大致是解析:函数 为奇函数,且 ,令 得 ,由于函数 为周期函数,而当 时, ,当 时, ,则答案应选C。

(10)已知 是 上最小正周期为2的周期函数,且当 时, ,则函数 的图象在区间 上与 轴的交点的个数为

A.6 B.7 C.8 D.9

解析:当 时 ,则 ,而 是 上最小正周期为2的周期函数,则 , ,答案应选B。(11)右图是长和宽分别相等的两个矩形。给定三个命题:

①存在三棱柱,其正(主)视图、俯视图如右图;

②存在四棱柱,其正(主)视图、俯视图如右图;

③存在圆柱,其正(主)视图、俯视图如右图。

其中真,命题的个数是

A.3 B.2 C.1 D.0

解析:①②③均是正确的,只需①底面是等腰直角三角形的直四棱柱,

让其直角三角形直角边对应的一个侧面平卧;②直四棱柱的两个侧面

是正方形或一正四棱柱平躺;③圆柱平躺即可使得三个命题为真,

答案选A。(12)设 是平面直角坐标系中两两不同的四点,若 ,,且 ,则称 调和分割 ,已知平面上的点 调和分割点 ,则下面说法正确的是

A. C可能是线段AB的中点 B. D可能是线段AB的中点

C. C,D可能同时在线段AB上 D. C,D不可能同时在线段AB的延长线上

解析:根据题意可知 ,若C或D是线段AB的中点,则 ,或 ,矛盾;

若C,D可能同时在线段AB上,则 则 矛盾,若C,D同时在线段AB的延长线上,则 , ,故C,D不可能同时在线段AB的延长线上,答案选D。

2011山东高考数学理科

对于前两项,若A正确,则B也正确,因此可以排除前两项。若C点是中点,则取λ=0.5,

1/λ=2,试问μ等于多少呢,不存在这样的μ,因而C不是中点,同理D不是中点。

再看C,若CD同时在线段AB上,则有λ<1,μ<1,且λ,μ>0,则1/λ 1/μ>2,不满足题目要求,舍去

最后看D,若CD同时在线段AB的延长线上,则有λ>1,或λ<0,对于μ亦如此,在这些情况下恒有1/λ<1,且1/μ<1,所以1/λ 1/μ<2恒成立,故而CD不可能同时在线段AB的延长线上。

综上,选D

2011山东高考数学真题

2010年全国高考一卷理科数学的最后一题的第二问。求详细解答 方法一:由题意可知:数列an单调递增而且有界,根据极限存在定理,可知道,必然会有一个极限h使得lim(n→∞)an=h,対原式两边取极限,有lim(n→∞)a(n 1)=lim(n→∞) (c-1/an ),可得c=h 1/h,显然h>a1,即h>1,又由题意有a(n 1)a1,代入递推式可知:c>2,然后设c=k 1/k,bn=1/(an-k),由于c>2,显然对于任意k>0且k≠1均满足,对递推式两边同时减去k,然后整理有:1/(a(n 1)-k)=(kan-k^2 k^2)/(an-k),继续化简有:b(n 1)=k k^2bn看,又b1=1/1-k,根据不动点或者构造等比数列,可知:bn=k^2(n-1)(1/1-k^2) k/1-k^2,从而an=[1-k^2/k^2(n-1) k] k,显然对于任意k>0且k≠1,1-k^2/k^2(n-1) k均递减且趋向于0,因此an也趋向于k,若klog2,e>1,所以a2=log2,4所以c3} (D){x|x -1或x 3}【答案】C【解析】因为集合 ,全集 ,所以【命题意图】本题考查集合的补集运算,属容易题.(2) 已知 (a,b∈R),其中i为虚数单位,则a b=(A)-1 (B)1 (C)2 (D)3【答案】B【解析】由 得 ,所以由复数相等的意义知 ,所以 1,故选B.【命题意图】本题考查复数相等的意义、复数的基本运算,属保分题。(3)在空间,下列命题正确的是(A)平行直线的平行投影重合(B)平行于同一直线的两个平面平行(C)垂直于同一平面的两个平面平行(D)垂直于同一平面的两条直线平行【答案】D【解析】由空间直线与平面的位置关系及线面垂直与平行的判定与性质定理可以得出答案。【命题意图】考查空间直线与平面的位置关系及线面垂直与平行的判定与性质,属基础题。(4)设f(x)为定义在R上的奇函式,当x≥0时,f(x)= 2x b(b为常数),则f(-1)=(A) 3 (B) 1 (C)-1 (D)-3【答案】D(7)由曲线y= ,y= 围成的封闭图形面积为[来源:ks5u.](A) (B) (C) (D)【答案】A【解析】由题意得:所求封闭图形的面积为 ,故选A。【命题意图】本题考查定积分的基础知识,由定积分求曲线围成封闭图形的面积。(8)某台小型晚会由6个节目组成,演出顺序有如下要求:节目甲必须排在第四位、节目乙不能排在第一位,节目丙必须排在最后一位,该台晚会节目演出顺序的编排方案共有(A)36种 (B)42种 (C)48种 (D)54种【答案】B可知当直线 平移到点(5,3)时,目标函式 取得最大值3;当直线 平移到点(3,5)时,目标函式 取得最小值-11,故选A。【命题意图】本题考查不等式中的线性规划知识,画出平面区域与正确理解目标函式 的几何意义是解答好本题的关键。(11)函式y=2x - 的影象大致是【答案】A【解析】因为当x=2或4时,2x - =0,所以排除B、C;当x=-2时,2x - = ,故排除D,所以选A。【命题意图】本题考查函式的图象,考查同学们对函式基础知识的把握程度以及数形结合的思维能力。(12)定义平面向量之间的一种运算“ ”如下,对任意的 , ,令,下面说法错误的是( )A.若 与 共线,则 B.C.对任意的 ,有 D.【答案】B【解析】若 与 共线,则有 ,故A正确;因为 ,而,所以有 ,故选项B错误,故选B。【命题意图】本题在平面向量的基础上,加以创新,属创新题型,考查平面向量的基础知识以及分析问题、解决问题的能力。二、填空题:本大题共4小题,每小题4分,共16分.(13)执行右图所示的程式框图,若输入 ,则输出 的值为 .【答案】【解析】当x=10时,y= ,此时|y-x|=6;当x=4时,y= ,此时|y-x|=3;当x=1时,y= ,此时|y-x|= ;当x= 时,y= ,此时|y-x|= ,故输出y的值为 。【命题意图】本题考查程式框图的基础知识,考查了同学们的试图能力。【答案】【解析】由题意,设所求的直线方程为 ,设圆心座标为 ,则由题意知:,解得 或-1,又因为圆心在x轴的正半轴上,所以 ,故圆心座标为(3,0),因为圆心(3,0)在所求的直线上,所以有 ,即 ,故所求的直线方程为 。【命题意图】本题考查了直线的方程、点到直线的距离、直线与圆的关系,考查了同学们解决直线与圆问题的能力。(18)(本小题满分12分)已知等差数列 满足: , , 的前n项和为 .(Ⅰ)求 及 ;(Ⅱ)令bn= (n N*),求数列 的前n项和 .【解析】(Ⅰ)设等差数列 的公差为d,因为 , ,所以有,解得 ,所以 ; = = 。(Ⅱ)由(Ⅰ)知 ,所以bn= = = ,所以 = = ,即数列 的前n项和 = 。【命题意图】本题考查等差数列的通项公式与前n项和公式的应用、裂项法求数列的和,熟练数列的基础知识是解答好本类题目的关键。(19)(本小题满分12分)如图,在五棱锥P—ABCDE中,PA⊥平面ABCDE,AB‖CD,AC‖ED,AE‖BC, ABC=45°,AB=2 ,BC=2AE=4,三角形PAB是等腰三角形.(Ⅰ)求证:平面PCD⊥平面PAC;(Ⅱ)求直线PB与平面PCD所成角的大小;(Ⅲ)求四棱锥P—ACDE的体积.【解析】(Ⅰ)证明:因为 ABC=45°,AB=2 ,BC=4,所以在 中,由余弦定理得: ,解得 ,所以 ,即 ,又PA⊥平面ABCDE,所以PA⊥ ,又PA ,所以 ,又AB‖CD,所以 ,又所以平面PCD⊥平面PAC;(Ⅱ)由(Ⅰ)知平面PCD⊥平面PAC,所以在平面PAC内,过点A作 于H,则,又AB‖CD,AB 平面 内,所以AB平行于平面 ,所以点A到平面 的距离等于点B到平面 的距离,过点B作BO⊥平面 于点O,则 为所求角,且 ,又容易求得 ,所以 ,即 = ,所以直线PB与平面PCD所成角的大小为 ;(Ⅲ)由(Ⅰ)知 ,所以 ,又AC‖ED,所以四边形ACDE是直角梯形,又容易求得 ,AC= ,所以四边形ACDE的面积为 ,所以四棱锥P—ACDE的体积为 = 。 2011新课标高考理科数学填空最后一题的详细解题过程。 y=c 2aa/sinA=b/sinB=c/sinC=2y=2*sinC 4sinA=2*sin(180-60-A) 4sinA=5sinA √3cosA最大值为2√7 2007年高考全国卷1数学最后一题的第二问,怎么求Bn通项 问题你也要贴出来把!!! 2009年全国高考理科数学卷第二卷的第11题怎么做?请帮忙 不要做了 都高考完了 还做个鸟啊 好好玩 玩了就出成绩了~~