2013湖南高考数学

得s4=a4-1/16,

即a4 S3=a4-1/16

∴S3=-1/16,

n=3代入Sn=(-1)^n*an-1/(2^n)

得s3=-a3-1/8,

a3=-1/8-S3

=-1/8-(-1/16)

=-1/16.

同理可得 a1=-1/4n为偶数时,sn-1=-1/(2^n)

n为奇数时,Sn=(-1)^n*an-1/(2^n)

得sn-sn-1=an

2an=-an-1 1/(2^n)

得a2=1/4

S1+S2+S3+...+S100=(-1/4 0-1/16 0-...........-1/2^200 0)

=-(1/4 1/16 .......... 1/2^200)【由首项为1/4,公比为1/4,可得该等比数列前50项的和】

=-(1-(1/4)^50)/3=(1/2^100-1)/3.

2013湖南高考数学题

2011年普通高等等学校招生全国统一模拟考试(湖南卷)

数学(理工农医类)

一、 选择题:本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1. 若 a<0, >1,则 (D)

A.a>1,b>0 B.a>1,b<0 C. 0<a<1, b>0 D. 0<a<1, b<0

2.对于非0向时a,b,“a//b”的确良 (A)

A.充分不必要条件 B. 必要不充分条件

C.充分必要条件 D. 既不充分也不必要条件

3.将函数y=sinx的图象向左平移 0 <2 的单位后,得到函数y=sin 的图象,则 等于 (D)

A. B. C. D.

4.如图1,当参数 时,连续函数 的图像分别对应曲线 和 , 则 [ B]

A B

C D 5.从10名大学生毕业生中选3个人担任村长助理,则甲、乙至少有1人入选,而丙没有入选的不同选法的种数位 w.w.w.k.s.5.u.c.o.m [ C]

A 85 B 56 C 49 D 28

6. 已知D是由不等式组 ,所确定的平面区域,则圆 在区域D内

的弧长为 [ B]

A B C D

7.正方体ABCD— 的棱上到异面直线AB,C 的距离相等的点的个数为(C)

A.2 B.3 C. 4 D. 5 w.w.w.k.s.5.u.c.o.m

8.设函数 在( , )内有定义。对于给定的正数K,定义函数取函数 = 。若对任意的 ,恒有 = ,则w.w.w.k.s.5.u.c.o.m

A.K的最大值为2 B. K的最小值为2

C.K的最大值为1 D. K的最小值为1 【D】

二、填空题:本大题共7小题,每小题5分,共35分,把答案填在答题卡中对应题号后的横线上

9.某班共30人,其中15人喜爱篮球运动,10人喜爱兵乓球运动,8人对这两项运动都不喜爱,则喜爱篮球运动但不喜爱乒乓球运动的人数为_12__

10.在 的展开式中, 的系数为___7__(用数字作答)

11、若x∈(0, )则2tanx tan( -x)的最小值为2 . w.w.w.k.s.5.u.c.o.m

12、已知以双曲线C的两个焦点及虚轴的两个端点为原点的四边形中,有一个内角为60 ,则双曲线C的离心率为

13、一个总体分为A,B两层,其个体数之比为4:1,用分层抽样方法从总体中抽取一个容量为10的样本,已知B层中甲、乙都被抽到的概率为 ,则总体中的个数数位 50 。

14、在半径为13的球面上有A , B, C 三点,AB=6,BC=8,CA=10,则w.w.w.k.s.5.u.c.o.m

(1)球心到平面ABC的距离为 12 ;

(2)过A,B两点的大圆面为平面ABC所成二面角为(锐角)的正切值为 3

15、将正⊿ABC分割成 ( ≥2,n∈N)个全等的小正三角形(图2,图3分别给出了n=2,3的情形),在每个三角形的顶点各放置一个数,使位于⊿ABC的三遍及平行于某边的任一直线上的数(当数的个数不少于3时)都分别一次成等差数列,若顶点A ,B ,C处的三个数互不相同且和为1,记所有顶点上的数之和为f(n),则有f(2)=2,f(3)= ,…,f(n)= (n 1)(n 2)三.解答题:本大题共6小题,共75分。解答应写出文字说明、证明过程或演算步骤。

16.(本小题满分12分)

在 ,已知 ,求角A,B,C的大小。

解:设

由 得 ,所以

又 因此 w.w.w.k.s.5.u.c.o.m

由 得 ,于是

所以 , ,既

由A= 知 ,所以 , ,从而或 ,既 或 故或 。

17.(本小题满分12分)

为拉动经济增长,某市决定新建一批重点工程,分别为基础设施工程、民生工程和产业建设工程三类,这三类工程所含项目的个数分别占总数的. 、 、 ,现在3名工人独立地从中任选一个项目参与建设。w.w.w.k.s.5.u.c.o.m

(I)求他们选择的项目所属类别互不相同的概率;

(II)记 为3人中选择的项目属于基础设施工程、民生工程和产业建设工程的人数,求 的分布列及数学期望。

解:记第1名工人选择的项目属于基础设施工程、民生工程和产业建设工程分别为事件 , , ,i=1,2,3.由题意知 相互独立, 相互独立, 相互独立, , , (i,j,k=1,2,3,且i,j,k互不相同)相互独立,且P( )=,P( )= ,P( )=

(1) 他们选择的项目所属类别互不相同的概率

P=3!P( )=6P( )P( )P( )=6 =

(2) 解法1 设3名工人中选择的项目属于民生工程的人数为 ,由己已知, -B(3, ),且 =3 。

所以P( =0)=P( =3)= = ,P( =1)=P( =2)= = w.w.w.k.s.5.u.c.o.m

P( =2)=P( =1)= =

P( =3)=P( =0)= =

故 的分布是0 1 2 3

P 的数学期望E =0 1 2 3 =2

解法2 第i名工人选择的项目属于基础工程或产业工程分别为事件 ,

i=1,2,3 ,由此已知, D, 相互独立,且

P( )-( , )= P( ) P( )= =

所以 -- ,既 , w.w.w.k.s.5.u.c.o.m 故 的分布列是1 2 318.(本小题满分12分)

如图4,在正三棱柱 中,

D是 的中点,点E在 上,且 。

(I) 证明平面 平面

(II) 求直线 和平面 所成角的正弦值。w.w.w.k.s.5.u.c.o.m 解 (I) 如图所示,由正三棱柱 的性质知 平面

又DE 平面A B C ,所以DE AA .

而DE AE。AA AE=A 所以DE 平面AC C A ,又DE 平面ADE,故平面ADE 平面AC C A 。

(2)解法1 如图所示,设F使AB的中点,连接DF、DC、CF,由正三棱柱ABC- A B C 的性质及D是A B的中点知A B C D, A B DF w.w.w.k.s.5.u.c.o.m

又C D DF=D,所以A B 平面C DF,

而AB∥A B,所以

AB 平面C DF,又AB 平面ABC,故

平面AB C 平面C DF。

过点D做DH垂直C F于点H,则DH 平面AB C 。w.w.w.k.s.5.u.c.o.m

连接AH,则 HAD是AD和平面ABC 所成的角。

由已知AB= A A ,不妨设A A = ,则AB=2,DF= ,D C = ,

C F= ,AD= = ,DH= = — ,

所以 sin HAD= = 。

即直线AD和平面AB C 所成角的正弦值为 。解法2 如图所示,设O使AC的中点,以O为原点建立空间直角坐标系,不妨设

A A = ,则AB=2,相关各点的坐标分别是

A(0,-1,0), B( ,0,0), C (0,1, ), D( ,- , )。

易知 =( ,1,0), =(0,2, ), =( ,- , )w.w.w.k.s.5.u.c.o.m

设平面ABC 的法向量为n=(x,y,z),则有解得x=- y, z=- ,

故可取n=(1,- , )。

(n )= = = 。

由此即知,直线AD和平面AB C 所成角的正弦值为 。

19.(本小题满分13分)

某地建一座桥,两端的桥墩已建好,这两墩相距 米,余下工程只需要建两端桥墩之间的桥面和桥墩,经预测,一个桥墩的工程费用为256万元,距离为 米的相邻两墩之间的桥面工程费用为 万元。假设桥墩等距离分布,所有桥墩都视为点,且不考虑其他因素,记余下工程的费用为 万元。(Ⅰ)试写出 关于 的函数关系式;(Ⅱ)当 =640米时,需新建多少个桥墩才能使 最小?

解 (Ⅰ)设需要新建 个桥墩,

所以 (Ⅱ) 由(Ⅰ)知, 令 ,得 ,所以 =64当00. 在区间(64,640)内为增函数,

所以 在 =64处取得最小值,此时,

故需新建9个桥墩才能使 最小。

20(本小题满分13分)

在平面直角坐标系xOy中,点P到点F(3,0)的距离的4倍与它到直线x=2的距离的3倍之和记为d,当P点运动时,d恒等于点P的横坐标与18之和w.w.w.k.s.5.u.c.o.m (Ⅰ)求点P的轨迹C;(Ⅱ)设过点F的直线I与轨迹C相交于M,N两点,求线段MN长度的最大值。解(Ⅰ)设点P的坐标为(x,y),则 3︳x-2︳

由题设

当x>2时,由①得 化简得

当 时 由①得 化简得

故点P的轨迹C是椭圆 在直线x=2的右侧部分与抛物线 在直线x=2的左侧部分(包括它与直线x=2的交点)所组成的曲线,参见图1

(Ⅱ)如图2所示,易知直线x=2与 , 的交点都是A(2, ),

B(2, ),直线AF,BF的斜率分别为 = , = .

当点P在 上时,由②知. ④

当点P在 上时,由③知w.w.w.k.s.5.u.c.o.m ⑤

若直线l的斜率k存在,则直线l的方程为

(i)当k≤ ,或k≥ ,即k≤-2 时,直线I与轨迹C的两个交点M( , ),N( , )都在C 上,此时由④知

∣MF∣= 6 - ∣NF∣= 6 - w.w.w.k.s.5.u.c.o.m

从而∣MN∣= ∣MF∣ ∣NF∣= (6 - ) (6 - )=12 - ( )

由 得 则 , 是这个方程的两根,所以 = *∣MN∣=12 - ( )=12 -

因为当 w.w.w.k.s.5.u.c.o.m

当且仅当 时,等号成立。

(2)当 时,直线L与轨迹C的两个交点 分别在 上,不妨设点 在 上,点 上,则④⑤知, 设直线AF与椭圆 的另一交点为E 所以 。而点A,E都在 上,且有(1)知 w.w.w.k.s.5.u.c.o.m

若直线 的斜率不存在,则 = =3,此时线段MN长度的最大值为

21.(本小题满分13分)

对于数列 若存在常数M>0,对任意的 ,恒有 w.w.w.k.s.5.u.c.o.m

则称数列 为B-数列

(1) 首项为1,公比为 的等比数列是否为B-数列?请说明理由;

请以其中一组的一个论断条件,另一组中的一个论断为结论组成一个命题

判断所给命题的真假,并证明你的结论;

(2) 设 是数列 的前 项和,给出下列两组论断;

A组:①数列 是B-数列 ②数列 不是B-数列

B组:③数列 是B-数列 ④数列 不是B-数列

请以其中一组中的一个论断为条件,另一组中的一个论断为结论组成一个命题。

判断所给命题的真假,并证明你的结论;

(3) 若数列 都是 数列,证明:数列 也是 数列。

解(1)设满足题设的等比数列为 ,则 ,于是因此| - | | - | … | - |=

因为 所以 即w.w.w.k.s.5.u.c.o.m 故首项为1,公比为 的等比数列是B-数列。

(2)命题1:若数列 是B-数列,则数列 是B-数列次命题为假命题。设 ,易知数列 是B-数列,但 由 的任意性知,数列 是B-数列此命题为。

命题2:若数列 是B-数列,则数列 是B-数列

此命题为真命题

因为数列 是B-数列,所以存在正数M,对任意的 有w.w.w.k.s.5.u.c.o.m

即 。于是所以数列 是B-数列。

(III)若数列 { }是 数列,则存在正数 ,对任意的 有注意到 同理: w.w.w.k.s.5.u.c.o.m

记 ,则有 因此

故数列 是 数列w.w.w.k.s.5.u.c.o.m

2013湖南高考数学理科

2013年,国内绝大多数省市采取高考满分总分750分制。但也有个别省市如江苏、海南等,采取不同的高考评价模式,或采取不同的标准计分办法,总分和大多数省市不一样。

一、总分满分750分的省份,有河南、河北、山东、安徽、辽宁、吉林、黑龙江、福建、陕西、山西、北京、浙江、广东、四川、重庆、湖南、湖北等。高考科目设置为“3 文科综合/理科综合”,其中“3”指语文、数学、外语,数学,“文科综合”则包括政治、历史、地理的综合,“理科综合”包括物理、化学、生物的综合。语文、数学、外语各科试卷满分均为150分,文科综合/理科综合试卷满分为300分,总分750分。

二、上海市高考考试科目虽然也是3 1,

但各科分值与750分满分制的省市有所不同。语文、数学、英语、文科综合或理科综合,每门各占150分,文理科总分均为600分

三、江苏省普通高考模式采用“3 学业水平测试 综合素质评价”。一是统考科目,为语文、数学、外语三门。各科分值设定为:语文160分,数学160分,外语120分,共440分;语文、数学分别另设附加题40分。文科类考生加试语文附加题;理科类考生加试数学附加题;不兼报文科类或理科类专业的体育类、艺术类考生不加试附加题。文科类、理科类考生三门统考总分为480分,体育类、艺术类考生三门统考总分为440分。二是学业水平测试科目包括政治、历史、地理、物理、化学、生物、技术七门。所有考生均需取得上述七门科目学业水平测试成绩。

四、海南省高考采取标准计分办法。一是裸分满分400分,语文(150)、文|理数学(150)、物化生|政史地(各100);二是根据排名计算转化分,通常是裸分加两百;三是再加10%会考分。政史地或物化生各100分,然后再加信息、技术各50分。海南省高考总分为900分。