江苏高考数学满分是160分。江苏高考总分为480分,其中语文科目满分160分;英语科目满分120分;语文、数学分别另设附加题40分。

高考江苏2017数学(高考江苏2017数学试卷)

江苏省普通高考模式为“3 学业水平测试+综合素质评价”。统考科目为语文、数学、外语三门。各科分值设定为:语文160分,数学160分,外语120分,共440分。语文、数学分别另设附加题40分。

文科类考生加试语文附加题;理科类考生加试数学附加题;不兼报文科类或理科类专业的体育类、艺术类考生不加试附加题。文科类、理科类考生三门统考总分为480分,体育类、艺术类考生三门统考总分为440分。选修科目情况等级标准介绍

学业水平测试必修科目考试含物理,化学,生物,政治,历史,地理,信息技术7科,各科原始满分为100分,考生需参加未选为学业水平测试选修科目的5门必修科目,其中信息技术只能作为学业水平测试必修科目,学业水平测试必修科目按原始得分实行等级计分。

文科考生必考历史,理科考生必考物理,再从化学,生物,政治,地理中任选一门,学业水平测试选修科目按原始得分排名实行等级计分,分为6个:A 、A ( 5%-20% ]、B ( 20-30% ]、B ( 30%-50% ]、C ( 50%-90% ]、D ( 90%-100%]。

高考江苏2017数学试卷

2017年江苏高考总分480分(语数外),其中选修两门按比例划分等级A 、A、B 、B、C、D,不计算分数。

普通高中学生根据校专业选考科目要求,结合自身特长兴趣,首先在物理、历史2门科目中选择 1门,再从思想政治、地理、化学、生物4门科目中选择1门参加考试。以文理科分开进行分数分值解释:

文科生:语文160分 40分(附加)、数学160分、英语120分、选修历史(必选)100分、选修X(自选)100分。

理科生:语文160分、数学160分 40分(附加)、英语120分、选修物理(必选)100分、选修X(自选)100分。

扩展资料

2019年4月23日,江苏省人民政府召开“深化普通高校考试招生制度综合改革实施方案”新闻发布会,正式发布江苏2021年高考改革方案。实行“3 1 2”、不分文理、总分750分、使用全国卷模式。

选择性考试科目思想政治、历史、地理、物理、化学、生物6门。学生根据高校的要求结合自身特长兴趣首先在物理、历史2门科目中选择1门再从思想政治、地理、化学、生物4门科目中选择2门考试成绩计入考生总分作为统一高考招生录取的依据。

参加统一高考的学生可以用统一高考的语文、数学、外语科目考试替代相应科目的合格性考试。

参考资料来源:百度百科-普通高等学校招生全国统一考试

参考资料来源:百度百科-江苏高考新方案

2017数学高考全国一卷真题

17.(12分) △ABC的内角A,B,C的对边分别为a,b,c,已知△ABC的面积为 (1)求sinBsinC; (2)若6cosBcosC=1,a=3,求△ABC的周长 18.(12分) 如图,在四棱锥P-ABCD中,AB//CD,且 (1)证明:平面PAB⊥平面PAD; (2)若PA=PD=AB=DC,,求二面角A-PB-C的余弦值. 19.(12分) 为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布N(μ,σ). (1)假设生产状态正常,记X表示一天内抽取的16个零件中其尺寸在(μ–3σ,μ 3σ)之外的零件数,求P(X≥1)及X的数学期望;学科&网 (2)一天内抽检零件中,如果出现了尺寸在(μ–3σ,μ 3σ)之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查. (ⅰ)试说明上述监控生产过程方法的合理性; (ⅱ)下面是检验员在一天内抽取的16个零件的尺寸: 9.95 10.12 9.96 9.96 10.01 9.92 9.98 10.04 10.26 9.91 10.13 10.02 9.22 10.04 10.05 9.95 经计算得,,其中xi为抽取的第i个零件的尺寸,i=1,2,…,16. 用样本平均数作为μ的估计值,用样本标准差s作为σ的估计值,利用估计值判断是否需对当天的生产过程进行检查?剔除之外的数据,用剩下的数据估计μ和σ(精确到0.01). 附:若随机变量Z服从正态分布N(μ,σ2),则P(μ–3σb>0),四点P1(1,1),P2(0,1),P3(–1,√3/2),P4(1,√3/2)中恰有三点在椭圆C上. (1)求C的方程; (2)设直线l不经过P2点且与C相交于A,B两点.若直线P2A与直线P2B的斜率的和为–1,证明:l过定点. 21.(12分) 已知函数=ae^x (a﹣2)e^x﹣x. (1) 讨论的单调性; (2) 若有两个零点,求a的取值范围. (二)选考题:共10分。 请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分。 22.[选修4-4,坐标系与参数方程](10分) 在直角坐标系xOy中,曲线C的参数方程为(θ为参数),直线l的参数方程为. (1)若a=-1,求C与l的交点坐标; (2)若C上的点到l的距离的最大值为,求a. 23.[选修4—5:不等式选讲](10分) 已知函数f(x)=–x ax 4,g(x)=│x 1│ │x–1│. (1)当a=1时,求不等式f(x)≥g(x)的解集; (2)若不等式f(x)≥g(x)的解集包含[–1,1],求a的取值范围.