高考数学排列组合

显然,只有11、22、33、44,相连的是正确的。这相当于把四个不同的球放到不同德盒子中,只有盒子和球号码相同的得3分,不同不得分。

可以 看到,不可能只错一个,因为其他三个正确,那么剩下那个也肯定正确。

但可能只对一个,例如11正确,其他为23、34、42(前者为名著,后者为作者,注意顺序,下同)

所以得分可能情况为0、3、6、12.

而我们这样的排列组合,总共的连线组合有P44=24种

全对:12分只有一种,1/24;

对两个:6分,请注意,对两个,四个取两个,有C42=6种组合,而剩下两个错误,那么剩下这两个只有相互连错,比如先连对了11、22,那么错的只有34和43这一种错误连法,那么概率为6/24;

对一个:3分,四个中对一个,有C41=4种,剩下三个全错,只有C32=2种对应的错误连法,比如11正确,那么剩下连法为(23、34、42)或者(24、32、43),所以总共有C41*C32=8,概率为8/24;

全错,0分,概率1-1/24-6/24-8/24=9/24。这里我直接由整体概率为1,如果单独来看,全错的时候,我们不妨先看1号名著,它不能连1号作者,那么连错的有C31=3种选择,剩下的要注意,剩下3个,对应也有三个(1号此时可以供选择)可能情况比较复杂,因为我们不知道1号连了哪个。但可以这样想,不管1号连了哪个,我们接下来就为这个连作者(比如连了3号名著,那么现在3名著号剩下的无论连哪个作者都是错),它有C31=3种连法。剩下那两个,要保证全错,肯定只有一种连法,比如刚才连了13、32,那剩下只能是24,41。所以总共有C31*C31=9种。

高考数学排列组合真题

类型一、特殊元素和特殊位置优先策略位置分析法和元素分析法是解决排列组合问题最常用也是最基本的方法,若以元素分析为主,需先安排特殊元素,再处理其它元素;若以位置分析为主,需先满足特殊位置的要求,再处理其它位置;若有多个约束条件,往往是考虑一个约束条件的同时还要兼顾其它条件。这种首先确定排列还是组合的问题,对于首位和末位无须考虑顺序,但是首位末位有优先需求,所以先要排首位和末位,末位必须是奇数,也就是从1,3,5这个里边去挑选一个即可,那首位还不能排0,在排除一个奇数,只剩下4个数可以选择,所以剩下的三位我们直接全排列就可以。类型二、相邻/相间元素捆绑策略要求某几个元素必须排在一起的问题,可以用捆绑法来解决问题,即将需要相邻的元素合并为一个元素,再与其它元素一起作排列,同时要注意合并元素内部也必须排列。审题时一定要注意关键字眼。类型三、不相邻问题插空策略先把没有位置要求的元素进行排队再把不相邻元素插入中间和两端。所以这两个方法的关键字都是相邻,以元素相邻为附加条件的应把相邻元素视为一个整体,即采用“捆绑法”;以某些元素不能相邻为附加条件的,可采用“插空法”。“插空”有同时“插空”和有逐一“插空”,并要注意条件的限定。类型四、定序问题倍缩空位插入策略]顺序固定问题用“除法”,对于某几个元素顺序一定的排列问题,可先将这几个元素与其它元素一同进行排列,然后用总的排列数除以这几个元素的全排列数。当然还可以用倍缩法,还可转化为占位插空模型处理。类型五、重排问题求幂策略分房问题又名:住店法,重排问题求幂策略,解决“允许重复排列问题”要注意区分两类元素:一类元素可以重复,另一类不能重复,把不能重复的元素看作“客”,能重复的元素看作“店”,再利用乘法原理直接求解。允许重复的排列问题的特点是以元素为研究对象,元素不受位置的约束,可以逐一安排各个元素的位置,一般地n不同的元素没有限制地安排在m个位置上的排列数为mn种。例:把6名实习生分配到7个车间实习,共有多少种不同的分法类型六、环排问题类型七、多排问题一般地,元素分成多排的排列问题,可归结为一排考虑,再分段研究。类型八、小集团问题小集团排列问题中,先整体后局部,再结合其他策略进行处理。类型九、元素相同问题隔板策略类型十、正难则反总体淘汰问题对于某些较复杂的、或较抽象的排列组合问题,可以利用转化思想,将其化归为简单的、具体的问题来求解。有些排列组合问题,正面直接考虑比较复杂,而它的反面往往比较简捷,可以先求出它的反面,再从整体中淘汰。对于含有否定词语的问题,还可以从总体中把不符合要求的减去,此时应注意既不能多减又不能少减。类型十一、平均分组除法问题类型十二、实际操作枚举问题类型十三、具体问题具体分析解含有约束条件的排列组合问题,可按元素的性质进行分类,按事件发生的连续过程分步,做到标准明确。分步层次清楚,不重不漏,分类标准一旦确定要贯穿于解题过程的始终。处理复杂的排列组合问题时可以把一个问题退化成一个简要的问题,通过解决这个简要的问题的解决找到解题方法,从而进下一步解决原来的问题。总结 排列组合虽然模型多变,但是其实老师最喜欢的就是具体问题具体分析,根据最基础的加法原理和乘法原理,根据排列组合的问题去求解,去化简。大家在高考剩余的20天里要多去思考题目的突破点,不要只看只是看懂了。大家真正应该思考的是我如果没有答案下一次遇见这个类型的题目应该如何进行下手,如何进行求解做题,如何保证得分,希望总结的这几个技巧对大家是有帮助的,排列组合其实不难,所以大家要加油!

高考数学排列组合公式

在高中数学的排列部分,使用"An"和"Cn"公式的情况要取决于两个因素:是否考虑元素的顺序以及是否允许重复。1. "An"式(也称为angement):当需要考虑元素的顺序时,使用"An"公式。排列是指从给定元素中选取一部分(或全部)进行排列,考虑元素的顺序。通常情况下,排列的元素个数与原始给定的元素个数相同。"An"的公式表示为An = n!/(n-r)!,其中n代表原始给定的元素个数,r代表需要排列的元素个数。例子:从A、B、C三个字母中选取两个字母进行排列,则使用"An"公式:A2 = 3!/(3-2)! = 6。2. "Cn"公式(也称为Combination):当不考虑元素的顺序时,使用"Cn"公式。组合是指从给定的元素中选取一部分(或全部)进行组合,不考虑元素的顺序。通常情况下,组合的元素个数少于原始给定的元素个数。"Cn"的公式表示为Cn = n!/[(n-r)! * r!],其中n代表原始给定的元素个数,r代表需要组合的元素个数。例子:从A、B、C三个字母中选取两个字母进行组合,则使用"Cn"公式:C2 = 3!/[(3-2)! * 2!] = 3。无论使用"An"还是"Cn"公式,关键是要明确是否需要考虑元素的顺序,以及是否允许重复元素的选择。如果需要考虑顺序并且不允许重复选择,则使用"An"公式;如果不考虑顺序或允许重复选择,则使用"Cn"公式。